edexcel

Mark Scheme (Results)

January 2016

Pearson Edexcel International A Level in Further Pure Mathematics 1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016

Publications Code IA043231
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking
 (But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $p q|=|c|$ and $| m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0 \quad$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

J anuary 2016
 WFM01 Further Pure Mathematics F1
 Mark Scheme

Question Number		Scheme		Notes	Marks
3.	$x^{2}-2 x+3=0$				
(a) (i) (ii)	$\alpha+\beta=2, \quad \alpha \beta=3$			Both $\alpha+\beta=2, \alpha \beta=3$	B1
	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\ldots \ldots$.		Use of a correct identity for $\alpha^{2}+\beta^{2}$ (May be implied by their work)		M1
		$=2^{2}-6=-2$ *		m a correct solution only	A1 *
(iii)	$\begin{array}{r} \alpha^{3}+\beta^{3}= \\ \text { or }= \end{array}$	$\begin{aligned} & x+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=\ldots . . . \\ & +\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)=\ldots \end{aligned}$	Use of a correct identity for $\alpha^{3}+\beta^{3}$ (May be implied by their work)		M1
		$\begin{aligned} & -3(3)(2)=-10 \\ & (-2-3)=-10 \end{aligned}$	-10 from a correct solution only		A1
					(5)
(b)(i) (ii)	$\left(\alpha^{2}+\beta^{2}\right)^{2}-2(\alpha \beta)^{2}=\alpha^{4}+2(\alpha \beta)^{2}+\beta^{4}-2(\alpha \beta)^{2}=\alpha^{4}+\beta^{4}$			Correct algebraic proof	B1 *
	Sum $=\alpha^{3}+\beta^{3}-(\alpha+\beta)=-10-2=-12$		Correct working without using explicit roots leading to a correct sum.		B1
	Product $=\left(\alpha^{3}-\beta\right)\left(\beta^{3}-\alpha\right)=(\alpha \beta)^{3}-\left(\alpha^{4}+\beta^{4}\right)+\alpha \beta$			Attempts to expand giving at least one term	M1
	$=(\alpha \beta)^{3}-\left(\left(\alpha^{2}+\beta^{2}\right)^{2}-2(\alpha \beta)^{2}\right)+\alpha \beta$				
	$=27-(4-18)+3=44$			Correct product	A1
	$\left\{x^{2}-\operatorname{sum} x+\right.$ product $\left.=0 \Rightarrow\right\} x^{2}+12 x+44=0$			ying $x^{2}-($ sum) $x+$ product	M1
				$x^{2}+12 x+44=0$	A1
					(6)
					11
	Question 3 Notes				
$\begin{aligned} & \text { (a) (i) } \\ & \text { (b) (ii) } \end{aligned}$	$\begin{gathered} \mathbf{1}^{\text {st }} \mathbf{A} 1 \\ \mathbf{1}^{\text {st }} \mathbf{A} \end{gathered}$	$\begin{array}{ll} \alpha+\beta=-2, & \alpha \beta=3 \Rightarrow \alpha^{2}+\beta^{2}=4-6=-2 \text { is M1A0 cso } \\ \alpha+\beta=-2, & \alpha \beta=3 \Rightarrow(\alpha \beta)^{3}-\left(\alpha^{4}+\beta^{4}\right)+\alpha \beta=44 \text { is first M1A1 } \end{array}$			
(a) (b)	Note Note	Applying $1+\sqrt{2} i, 1-\sqrt{2} i$ explicitly in part (a) will score B0M0A0M0A0 Applying $1+\sqrt{2} i, 1-\sqrt{2} i$ explicitly in part (b) will score a maximum of B1B0M0A0M1A0			
(a)	Note	Finding $\alpha+\beta=2, \alpha \beta=3$ by writing down or applying $1+\sqrt{2} \mathrm{i}, 1-\sqrt{2} \mathrm{i}$ but then writing $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=2^{2}-6=-2$ and $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=8-3(3)(2)=-10$ scores B0M1A0M1A0 in part (a). Such candidates will be able to score all marks in part (b) if they use the method as detailed on the scheme in part (b).			
(b)(ii)	Note	A correct method leading to a candidate stating $p=1, q=12, r=44$ without writing a final answer of $x^{2}+12 x+44=0$ is final M1A0			

Question Number	Scheme		Notes	Marks
4. (a)	Rotation		Rotation	B1
	225 degrees (anticlockwise)		225 degrees or $\frac{5 \pi}{4}$ (anticlockwise) or 135 degrees clockwise	B1 o.e.
	about (0, 0)		This mark is dependent on at least one of the previous B marks being awarded. About $(0,0)$ or about O or about the origin	dB1
	Note: Give $2^{\text {nd }} \mathrm{B} 0$ for 225 degrees clockwise			(3)
(b)	$\{n=\} 8$		8	B1 cao
				(1)
(c) Way 1	$\mathbf{A}^{-1}=\left(\begin{array}{cc}-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$ or $\left(\begin{array}{rr}-\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\end{array}\right)$		Correct matrix	B1
	$\left\{\mathbf{B}=\mathbf{C A}^{-1}\right\}=\left(\begin{array}{rr}2 & 4 \\ -3 & -5\end{array}\right)\left(\begin{array}{rr}-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)=\ldots$		Attempts $\mathbf{C A}^{-1}$ and finds at least one element of the matrix B	M1
	$=\left(\begin{array}{rr}\sqrt{2} & -3 \sqrt{2} \\ -\sqrt{2} & 4 \sqrt{2}\end{array}\right)$		dependent on the previous B1M1 marks At least 2 correct elements	A1
			All elements are correct	A1
	$\{\mathbf{B} \mathbf{A}=\}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{rr}-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)=\left(\begin{array}{rr}2 & 4 \\ -3 & -5\end{array}\right)$			(4)
(c) Way 2			Correct statement using 2×2 matrices. All 3 matrices must contain four elements. (Can be implied). (Allow one slip in copying down \mathbf{C})	B1
	$\begin{aligned} & -\frac{a}{\sqrt{2}}-\frac{b}{\sqrt{2}}=2, \frac{a}{\sqrt{2}}-\frac{b}{\sqrt{2}}=4 \text { or } \\ & -\frac{c}{\sqrt{2}}-\frac{d}{\sqrt{2}}=-3, \frac{c}{\sqrt{2}}-\frac{d}{\sqrt{2}}=-5 \end{aligned}$ and finds at least one of either a or b or c or d		Applies $\mathbf{B A}=\mathbf{C}$ and attempts simultaneous equations in a and b or c and d and finds at least one of either a or b or c or d	M1
	$\begin{gathered} =\left(\begin{array}{cc} \sqrt{2} & -3 \sqrt{2} \\ -\sqrt{2} & 4 \sqrt{2} \end{array}\right) \\ \text { or } a=\sqrt{2}, b=-3 \sqrt{2}, c=-\sqrt{2}, d=4 \sqrt{2} \end{gathered}$		ndent on the previous B1M1 marks At least 2 correct elements	A1
			All elements are correct	A1
				(4)
				8
	Question 4 Notes			
$\begin{aligned} & \text { 4. (a) } \\ & \text { (c) } \end{aligned}$	Note Note	Condone "Turn" for the $1^{\text {st }} \mathrm{B} 1$ mark. You can ignore previous working prior to a candidate finding CA ${ }^{-1}$ (i.e. you can ignore the statements $\mathbf{C}=\mathbf{B A}$ or $\mathbf{C}=\mathbf{A B}$).		
	A1 A1 \quad You can allow equivalent matrices/values, e.g. $\left(\begin{array}{cc}\frac{2}{\sqrt{2}} & -\frac{6}{\sqrt{2}} \\ -\frac{2}{\sqrt{2}} & \frac{8}{\sqrt{2}}\end{array}\right)$			

Question Number	Scheme		Notes			Marks			
5. (a)	$\left\{\sum_{r=1}^{n} 8 r^{3}-3 r\right\}=8\left(\frac{1}{4} n^{2}(n+1)^{2}\right)-3\left(\frac{1}{2} n(n+1)\right)$		Attempt to substitute at least one of the standard formulae correctly into the given expression			M1			
			Correct expression			A1			
	$=\frac{1}{2} n(n+1)[4 n(n+1)-3] \quad$dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having used both standard formulae correctly					dM1			
	$=\frac{1}{2} n(n+1)\left[4 n^{2}+4 n-3\right]$		\{this step does not have to be written\}						
	$=\frac{1}{2} n(n+1)(2 n+3)(2 n-1)$		Correct completion with no errors			A1 cso			
						(4)			
(b)	Let $\mathrm{f}(n)=\frac{1}{2} n(n+1)(2 n+3)(2 n-1), \mathrm{g}(n)=\frac{8}{4} n^{2}(n+1)^{2} \& \mathrm{~h}(n)= \pm \frac{3}{2} n(n+1)$								
	$\begin{gathered} \left\{\sum_{r=5}^{10} 8 r^{3}-3 r\right\}=\frac{1}{2}(10)(11)(23)(19)-\frac{1}{2}(4)(5)(11)(7) \\ \{=24035-770=23265\} \end{gathered}$			Attempts to find either - $f(10)$ and $f(4)$ or $f(5)$ - $g(10)$ and $g(4)$ or $g(5)$ and $h(10)$ and $h(4)$ or $h(5)$		M1			
	$\begin{aligned} \sum_{r=5}^{10} k r^{2} & =k\left(\frac{1}{6}(10)(11)(21)-\frac{1}{6}(4)(5)(9)\right)\{=k(385-30)=355 k\} \\ \text { or } & =k\left(5^{2}+6^{2}+7^{2}+8^{2}+9^{2}+10^{2}\right)\{=355 k\} \end{aligned}$				Correct attempt at $\sum_{r=5}^{10} k r^{2}$	M1			
	$23265+355 k=22768 \Rightarrow k=-\frac{497}{355} \text { or }-\frac{7}{5}$		dependent on both previous M marks. Uses both previous method mark results to form a linear equation in k using 22768 and solves to give $k=\ldots$$k=-\frac{497}{355} \text { or }-\frac{7}{5} \text { or }-1.4 \text { or equivalent }$			ddM1			
			A1 o.e.						
						(4)			
									8
				n 5 Notes					
5. (a)	Note	Applying eg. $n=1, n=2$ to the printed equation without applying the standard formula to give $a=2, b=-1$ is MOAOMOAO							
	$\begin{gathered} \text { Alt } \\ \text { dM1 } \\ \text { A1 cso } \end{gathered}$	Alternative Method: Using $2 n^{4}+4 n^{3}+\frac{1}{2} n^{2}-\frac{3}{2} n \equiv a n^{4}+\left(b+\frac{5}{2} a\right) n^{3}+\left(\frac{5}{2} b+\frac{3}{2} a\right) n^{2}+\frac{3}{2} b n$ o.e. Equating coefficients to give both $a=2, b=-1$ Demonstrates that the identity works for all of its terms							
(b)	Note	$\mathrm{f}(10)-\mathrm{f}(5)=\frac{1}{2}(10)(11)(23)(19)-\frac{1}{2}(5)(6)(13)(9)\{=24035-1755=22280\}$							
	Note	Applying $\sum_{r=5}^{10} 8 r^{3}-\sum_{r=5}^{10} 3 r+k \sum_{r=5}^{10} r^{2}$ gives either - $(24200-165+385 k)-(800-30+30 k)=22768$ - $23400-135+355 k=22768$ $985+25 k+1710+36 k+2723+49 k+4072+64 k+5805+81 k+7970+100 k=23265+355 k$ is fine for the first two M1M1 marks with the final ddM1A1 leading to $k=-1.4$							
	Note								

Note

\quad • $\left\{f(k+1)=4 \mathrm{f}(k)+21\left(5^{2 k-1}\right)\right\} \Rightarrow \mathrm{f}(k+1)=84 M+21\left(5^{2 k-1}\right)$	
\bullet	$\left\{\mathrm{f}(k+1)=25 \mathrm{f}(k)-21\left(4^{k+1}\right)\right\} \Rightarrow \mathrm{f}(k+1)=525 M-21\left(4^{k+1}\right)$

