

Mark Scheme (Results)

January 2016

Pearson Edexcel International A Level in Further Pure Mathematics 1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code IA043231
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2+bx+c=0$$
:
$$\left(x\pm\frac{b}{2}\right)^2\pm q\pm c=0, \quad q\neq 0$$
, leading to $\mathbf{x}=\dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \to x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \to x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2016 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number		Scheme			Notes	Marks		
1. (a)	(3+2i)	(3+2i)(1-i) = 3-3i+2i+2		At least 3 correct terms		M1		
		=5-i (C		cao (Correct answer only scores both marks)		A1	(2)	
(b)		$w^* = 1 + i$			Understanding that $w^* = 1 + i$	B1	(=)	
		$\left\{\frac{z}{w^*} = \right\} \frac{3+2i}{1+i} \times \frac{1-i}{1-i}$]	Multiplies top and bottom by the conjugate of the denominator	M1		
	$\left\{=\frac{3-}{}\right\}$	$\frac{3-3i+2i+2}{1+1} = \frac{5}{2} - \frac{1}{2}i$			$\frac{5}{2} - \frac{1}{2}i$ or $2.5 - 0.5i$	A1		
					3.74	(3)		
(c)	$\left \left 3 + 2i \right \right $	$+ k = \sqrt{53} \Rightarrow (3+k)^2 + 4 = 53$	Substitu	ites for	z and uses Pythagoras correctly.	M1;		
	Γ.	, , ,			Correct equation in any form	A1		
	$(3+k)^{2} + 4 = 53 \Rightarrow (3+k)^{2} = 49 \Rightarrow k =$ or $(3+k)^{2} + 4 = 53 \Rightarrow k^{2} + 6k - 40 = 0$				dependent on the previous M mark Attempt to solve for k	dM1		
		$\Rightarrow (k-4)(k+10) = 0$	$\Rightarrow k =$					
		$\{k=\}\ 4,\ -10$			Both $\{k = \}4, -10$	A1		
							(4)	
				4.37			9	
			Question	`				
1. (b)	Note	Alternative acceptable method:	$\left(\frac{z}{w^*}\right)\left(\frac{v}{v}\right)$	$\left \frac{v}{v}\right = \frac{zv}{w}$	$\left \frac{w}{2}\right ^2 = \frac{5-1}{2} = \frac{5}{2} - \frac{1}{2}i$			
(b)	Note	Give A0 for writing down $\frac{5-i}{2}$ w						
	Note		Give B0M0A0 for writing down $\frac{5}{2} - \frac{1}{2}i$ from no working in part (b).					
	Note	Give B0M1A0 for $\frac{3+2i}{1-i} \times \frac{1+i}{1+i}$						
	Note Simplifying a correct $\frac{5}{2} - \frac{1}{2}i$ in part (b) to a final answer of $5-i$ is A0							
(c)	Note	Give final A0 if a candidate rejects	s one of	k = 4 or	· <i>k</i> = –10			
(b)	ALT	$\frac{3+2i}{1+i} = a + bi$ B1 ;						
		\Rightarrow 3+2i = $(a+bi)(1+i) \Rightarrow$ 3 = a	-b, $2=a$	$a+b \Rightarrow$	$a =, b =$ for M1 and $\frac{5}{2} - \frac{1}{2}$	i for A1		

Question Number		Scheme		Notes	Marks	
2.	$f(x) = x^2 - \frac{3}{\sqrt{x}} - \frac{4}{3x^2}$					
(a)	f(1.6) = -0.3325 f(1.7) = 0.1277			Attempts to evaluate both $f(1.6)$ and $f(1.7)$ and either $f(1.6) = awrt -0.3$ or $f(1.7) = awrt 0.1$	M1	
	•	ange (positive, negative) (ar uous) therefore (a root) α is x = 1.6 and $x = 1.7$	* 1	Both $f(1.6) = awrt -0.3$ and $f(1.7) = awrt 0.1$, sign change and conclusion.	A1 cso	
					(2)	
(b)	f'(<i>x</i>	$ = 2x + \frac{3}{2}x^{-\frac{3}{2}} + \frac{8}{3}x^{-3} $	$x^2 \rightarrow \pm A$	At least one of either $Ax \text{ or } -\frac{3}{\sqrt{x}} \to \pm Bx^{-\frac{3}{2}} \text{ or } -\frac{4}{3x^2} \to \pm Cx^{-3}$	M1	
		2 3	where <i>A</i> , <i>B</i> and <i>C</i> are non-zero constants. At least 2 differentiated terms are correct	A1		
				Correct differentiation	A1	
	$\left\{\alpha \simeq 1.6 - \frac{f(1.6)}{f'(1.6)}\right\} \Rightarrow \alpha \simeq 1.6 - \frac{-0.332541}{4.592200}$ dependent on the previous M mark Valid attempt at Newton-Rapshon using their values of $f(1.6)$ and $f'(1.6)$					
	$\left\{\alpha = 1.672414 \Rightarrow \right\} \alpha = 1.672$			dependent on all 4 previous marks 1.672 on their first iteration (Ignore any subsequent applications)	A1 cso cao	
	Correct derivative followed by correct answer scores full marks in (b) Correct answer with <u>no</u> working scores no marks in (b)					
		Correct unit wer wi	tii <u>iio</u> workii	ag seores no marks m (b)	(5)	
					7	
			Quest	tion 2 Notes		
2. (a)	Candidate needs to state both $f(1.6) = \text{awrt } -0.3$ and $f(1.7) = \text{awrt } 0.1$ along with a reason and conclusion. Reference to change of sign or $f(1.6) \times f(1.7) < 0$ or a diagram or < 0 and > 0 or one positive, one negative are sufficient reasons. There must be a (minimal, not incorrect) conclusion, eg. root is in between 1.6 and 1.7, hence root is in interval, QED and a square are all acceptable. Ignore the presence or absence of any reference to continuity. A minimal					
(b)	 acceptable reason and conclusion is "change of sign, hence root". Note Incorrect differentiation followed by their estimate of α with no evidence of apply the NR formula is final dM0A0. 					
	Note If the answer is incorrect it must be clear that we must see evidence of both $f(1.6)$ at					
				cess. So that just $1.6 - \frac{f(1.6)}{f'(1.6)}$ with an incorre	ect answer	
		and no other evidence scor	res MU.			

Question Number		Scheme	Notes		Marks	
3.		$x^2 - 2x + 3$				
(a) (i)		$\alpha + \beta = 2$, $\alpha\beta = 3$	Both $\alpha + \beta = 2$, $\alpha\beta = 3$			B1
(ii)	α^2	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = \dots$ Use of a correct identity for $\alpha^{2} + \beta^{2}$ (May be implied by their work)			M1	
	$= 2^2 - 6 = -2 * -2 $ from a correct solution only			A1 *		
(iii)	,	$S + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = \dots$ $Or = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = \dots$ $Or = 8 - 3(3)(2) = -10$ Use of a correct identity for $\alpha^3 + \beta^3$ (May be implied by their work)			M1	
		3-3(3)(2) = -10 $2(-2-3) = -10$		-10	from a correct solution only	A1
						(5)
(b)(i)	$\left(\alpha^2+\beta^2\right)^2$	$-2(\alpha\beta)^{2} = \alpha^{4} + 2(\alpha\beta)^{2} + \beta^{4} - 2(\alpha\beta)^{2}$	$\operatorname{Correct algebraic proof}^{2} = \alpha^{4} + \beta^{4}$ Correct algebraic proof			B1 *
(ii)	Sum = α^3	$+\beta^3 - (\alpha + \beta) = -10 - 2 = -12$	Correct working without using explicit roots leading to a correct sum.			B1
	Product =	$(\alpha^3 - \beta)(\beta^3 - \alpha) = (\alpha\beta)^3 - (\alpha^4 + \beta^4) +$	A' = B + B'		Attempts to expand giving at least one term	M1
	$= \left(\alpha\beta\right)^3 - \left(\left(\alpha^2 + \beta^2\right)^2 - 2\left(\alpha\beta\right)^2\right) + \alpha\beta$					
	= 27 - (4 - 18) + 3 = 44 Correct pr				Correct product	A1
	$\left\{x^2 - \operatorname{sum} x + \operatorname{product} = 0 \Longrightarrow\right\} x^2 + 12x + 44 = 0$			O Applying $x^2 - (\operatorname{sum})x + \operatorname{product}$ $x^2 + 12x + 44 = 0$		M1 A1
					x +12x+44=0	(6)
	Question 3 Notes					
(a) (i)	1 st A1	$\alpha + \beta = -2, \alpha\beta = 3 \Rightarrow \alpha^2 + \beta^2 = -2$				
		1				
(b) (ii)	1 st A1	$\alpha + \beta = -2, \alpha\beta = 3 \Rightarrow (\alpha\beta)^3 - (\alpha\beta)^3$				
(a)	Note	Applying $1+\sqrt{2}i$, $1-\sqrt{2}i$ explicitly in part (a) will score B0M0A0M0A0				
(b)	Note	Applying $1+\sqrt{2}i$, $1-\sqrt{2}i$ explicitly in part (b) will score a maximum of B1B0M0A0M1A0				
(a)	Note	Finding $\alpha + \beta = 2$, $\alpha\beta = 3$ by writing				
		$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 2^2 - 6 = -6$	2 and α	$x^3 + \mu$	$\beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = 8 -$	3(3)(2) = -10
	scores B0M1A0M1A0 in part (a). Such candidates will be able to score all mar they use the method as detailed on the scheme in part (b).					
(b)(ii)	Note	A correct method leading to a candida				ng a final
answer of $x^2 + 12x + 44 = 0$ is final M1A0						

Question Number		Scheme		Notes	Marks	
4. (a)	Rotation			Rotation	B1	
	225 degrees (anticlockwise)		225 degrees or $\frac{5\pi}{4}$ (anticlockwise) or 135 degrees clockwise	B1 o.e.		
	about (0, 0)			mark is dependent on at least one of the previous B marks being awarded. About (0, 0) or about O or about the origin	dB1	
	Note: Give	e 2 nd B0 for 225 degrees clock	wise			(3)
(b)		$\{n=\}$ 8		8	B1 cao	(4)
(0)						(1)
(c) Way 1	$\mathbf{A}^{-1} =$	$ \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \text{ or } \begin{pmatrix} -\frac{\sqrt{2}}{2} & -\frac{1}{\sqrt{2}} \\ \frac{\sqrt{2}}{2} & -\frac{1}{\sqrt{2}} \end{pmatrix} $	$\begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}$	Correct matrix	B1	
	$\left\{\mathbf{B} = \mathbf{C}\mathbf{A}^{-1}\right\} = \begin{pmatrix} 2 & 4 \\ -3 & -5 \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = .$			Attempts CA ⁻¹ and finds at least one element of the matrix B	M1	
		$= \begin{pmatrix} \sqrt{2} & -3\sqrt{2} \\ \sqrt{2} & 4\sqrt{2} \end{pmatrix}$		dependent on the previous B1M1 marks At least 2 correct elements	A1	
	$=$ $\begin{pmatrix} -\sqrt{2} & 4\sqrt{2} \end{pmatrix}$			All elements are correct	A1	
				7 th elements are correct	711	(4)
(c) Way 2	${\mathbf B}{\mathbf A} =$	$ \begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} $	2 4 -3 -5	Correct statement using 2×2 matrices. All 3 matrices must contain four elements. (Can be implied). (Allow one slip in copying down C)	B1	(*)
	$-\frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} = 2, \frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} = 4 \text{ or}$ $-\frac{c}{\sqrt{2}} - \frac{d}{\sqrt{2}} = -3, \frac{c}{\sqrt{2}} - \frac{d}{\sqrt{2}} = -5$ and finds at least one of either a or b or c or c			Applies $BA = C$ and attempts simultaneous equations in a and b or c and d and finds at least one of either a or b or c or d	M1	
		$= \begin{pmatrix} \sqrt{2} & -3\sqrt{2} \\ -\sqrt{2} & 4\sqrt{2} \end{pmatrix}$		dependent on the previous B1M1 marks At least 2 correct elements		
	or $a = \sqrt{2}$, $b = -3\sqrt{2}$, $c = -\sqrt{2}$, $d = 4\sqrt{2}$		$\sqrt{2}$	All elements are correct	A1	
						(4)
			0	tion 4 Notes		8
4 (a)	Note	Condona "Turn" for the 18t I		stion 4 Notes		
4. (a) (c)	Note Condone "Turn" for the 1 st B1 mark. Note You can ignore previous working prior to a candidate finding CA ⁻¹					
	Note You can ignore previous working prior to a candidate finding CA^{-1} (i.e. you can ignore the statements $C = BA$ or $C = AB$).					
	A1 A1 You can allow equivalent matrices/values, e.g. $\begin{pmatrix} \frac{2}{\sqrt{2}} & -\frac{6}{\sqrt{2}} \\ -\frac{2}{\sqrt{2}} & \frac{8}{\sqrt{2}} \end{pmatrix}$					

Question Number		Scheme		Note	s	Marks
5. (a)	$\left\{\sum^{n} 8r^{3} - \right.$	$-3r = 8\left(\frac{1}{4}n^{2}(n+1)^{2}\right) - 3\left(\frac{1}{2}n(n+1)^{2}\right)$		Attempt to substitute at least one of the standard formulae correctly into the given expression		M1
	\ r=1) (1		(Correct expression	A1
		$= \frac{1}{2}n(n+1)\left[4n(n+1)-3\right]$ dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having used both standard formulae correctly				dM1
		$= \frac{1}{2}n(n+1)[4n^2+4n-3]$ {this step does not have to be written}				
		$= \frac{1}{2} n (n+1) (2n+3) (2n-1)$		Correct comple	tion with no errors	A1 cso
						(4)
(b)	Let $f(n)$	$= \frac{1}{2}n(n+1)(2n+3)(2n-1), g(n) = \frac{8}{4}$	$n^2(n+1)$) ² & $h(n) = \pm \frac{3}{2}n(n +$	1)	
	$\left\{ \sum_{r=5}^{10} 8r^3 - \right\}$	$\left\{\sum_{r=5}^{10} 8r^3 - 3r\right\} = \frac{1}{2}(10)(11)(23)(19) - \frac{1}{2}(4)(5)(11)(7)$ Attempts to find either f (10) and f (4) or f (5)				M1
	(1-3	$ \left\{ = 24035 - 770 = 23265 \right\} $			and g(4) or g(5) and h(4) or h(5)	
	r=5	$e^{-2} = k \left(\frac{1}{6} (10)(11)(21) - \frac{1}{6} (4)(5)(9) \right) \left\{ = k(385 - 30) = 355k \right\}$ Correct attempt at $\sum_{i=0}^{10} kr^2$				M1
	Oi	$r = k\left(5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2\right) \left\{ = 35^2 + 10^2 + 10^2 \right\}$			r=5	
	23265 + 35	$55k = 22768 \implies k = -\frac{497}{355} \text{ or } -\frac{7}{5}$	Use	ependent on both pressions both previous methon a linear equation in sol	od mark results to	ddM1
		333 3		$k = -\frac{497}{355}$ or $-\frac{7}{5}$ or -	A1 o.e.	
						(4) 8
			Duestion	n 5 Notes		<u> </u>
5. (a)	Note	Applying eg. $n = 1$, $n = 2$ to the prin	•		g the standard form	ula
		to give $a = 2$, $b = -1$ is M0A0M0A0				
	Alt	Alternative Method: Using $2n^4 + 4n^3 + \frac{1}{2}n^2 - \frac{3}{2}n = an^4 + (b + \frac{5}{2}a)n^3 + (\frac{5}{2}b + \frac{3}{2}a)n^2 + \frac{3}{2}a^2 + $				
	dM1 A1 cso	,				
(b)	Note $f(10) - f(5) = \frac{1}{2}(10)(11)(23)(19) - \frac{1}{2}(5)(6)(13)(9) \left\{ = 24035 - 1755 = 22280 \right\}$					
	Note Applying $\sum_{r=5}^{10} 8r^3 - \sum_{r=5}^{10} 3r + k \sum_{r=5}^{10} r^2$ gives either					
		• (24200 – 165 + 385k) – (80 • 23400 – 135 + 355k – 2276		+30k) = 22768		
	Note	23400 - 135 + 355k = 2276 $ 985 + 25k + 1710 + 36k + 2723 + 49$		2+64k+5805+81k	+7970 + 100k = 232	265 + 355 <i>k</i>
	is fine for the first two M1M1 marks with the final ddM1A1 leading to $k = -1.4$					

Question Number	Scheme		Notes	Marks		
6. (a)	$y = \frac{c^2}{x} = c^2 x^{-1} \implies \frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2}$ $xy = c^2 \implies x \frac{dy}{dx} + y = 0$		$\frac{\mathrm{d}y}{\mathrm{d}x} = k x^{-2}$			
	$xy = c^2 \Rightarrow x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$		t use of product rule. The sum of vo terms, one of which is correct.	M1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}p} \cdot \frac{\mathrm{d}p}{\mathrm{d}x} = -\frac{c}{p^2} \cdot \frac{1}{c}$		their $\frac{dy}{dp} \times \frac{1}{\text{their } \frac{dx}{dp}}$			
	$\frac{dy}{dx} = -c^2 x^{-2} \text{ or } x \frac{dy}{dx} + y = 0 \text{ or } \frac{dy}{dx} = -\frac{c}{p^2} \cdot \frac{1}{c}$		Correct differentiation	A1		
	So, $m_N = p^2$ Perpendicular gradient rule where $m_N (\neq m_T)$ is found from using calculus.					
	$y - \frac{c}{p} = p^2(x - cp)$ or $y = p^2x + \frac{c}{p} - cp^3$ Correct line method where m_N is found from using calculus. $py - p^3x = c(1 - p^4)*$					
	$py - p^3x = c(1 - p^4)*$					
<u> </u>				(5)		
(b)	$y = \frac{c^2}{x} \Rightarrow p \frac{c^2}{x} - p^3 x = c \left(1 - p^4 \right) \text{ or } x = \frac{c^2}{y} \Rightarrow py - p^3 \frac{c^2}{y} = c \left(1 - p^4 \right)$ Substitutes $y = \frac{c^2}{p}$ or $x = \frac{c^2}{y}$ into the printed equation					
	to obtain an equation in either x , c					
	$p^3x^2 + c(1-p^4)x - c^2p = 0$ or	$py^2 - c(1-$	$-p^4 y - c^2 p^3 = 0$			
	$(x-cp)(p^3x+c)=0 \Rightarrow x = \dots$ or	$\left(y - \frac{c}{p}\right) \left(yp\right)$	$+cp^4$)=0 $\Rightarrow y=$	M1		
	Correct attempt of solving a 3TQ	to find the x or	y coordinate of Q			
	$Q\left(-\frac{c}{p^3}, -cp^3\right)$ Can be	simplified or	At least one correct coordinate.	A1		
	, 1			A1		
	Note: If Q is stated as coordinates then they n			(4)		
(b) ALT	Let Q be $\left(cq, \frac{c}{q}\right)$ so $\frac{c}{q}p - p^3cq = c\left(1 - p^4\right)$					
	Substitutes $x = cq$ or $y = \frac{c}{q}$ into the printed equation to obtain an equation in only p , c and q .					
	$cp - p^{3}cq^{2} = cq - cqp^{4} \Rightarrow p - q - p^{3}q^{2} + qp^{4} = 0$					
	$(p-q)(1+p^3q)=0 \Rightarrow q=$					
	Correct attempt to find q in terms of p					
	(1)	simplified or	At least one correct coordinate	A1		
	(p^3, p)	ın-simplified.	Both correct coordinates	A1		
				(4)		
	· ·			9		

Question Number	Scheme		Notes	Marks			
7.	f(x) =	$= x^4 - 3x^3 -$	$x^4 - 3x^3 - 15x^2 + 99x - 130$				
(a)	3 – 2i is also a root			3 – 2i	B1		
	or any valid me			expand $(x-(3+2i))(x-(3-2i))$ thod to establish the quadratic factor $x \pm 2i \Rightarrow x - 3 = \pm 2i \Rightarrow x^2 - 6x + 9 = -4$	M1		
			0	r sum of roots 6, product of roots 13	A 1		
	$f(x) = (x^2 - 6x + 13)(x^2 + 3x)$	-10)	Note:	$x^{2}-6x+13$ Attempt other quadratic factor. Using long division to get as far as $x^{2} \pm kx$ is fine for this mark.	M1		
				$x^2 + 3x - 10$	A1		
	${x^2 + 3x - 10} = (x+5)(x-2)$	$\Rightarrow x = \dots$		Correct method for solving a 3TQ on their 2 nd quadratic factor	M1		
	$x = -5, \ x = 2$			Both values correct	A1		
	Note: Writing down 2, -5 , $3+2i$, $3-2i$ with no working is B1M0A0M0A0M0A0						
(a)	Alternative using Factor Theore			I	D.1		
	$\begin{cases} 3 - 2i \\ \left\{ f(2) = \right\} 2^4 - 3 \times 2^3 - 15 \times 2^2 + 99 \times 2 - 130 = 0 \end{cases}$			$\frac{3-2i}{\text{Attempts to find } f(2)}$	B1 M1		
				Shows that $f(2) = 0$	A1		
	$\{f(-5) = \}(-5)^4 - 3(-5)^3 - 15(-5)^2 + 99 \times (-5) - 130 = 0$			Attempts to find $f(-5)$	M1		
				Shows that $f(-5) = 0$	A1		
				ows that $f(2) = 0$ and states $x = 2$ vs that $f(-5) = 0$ and states $x = -5$ Shows both $f(2) = 0$ & $f(-5) = 0$	M1		
				and states both $x = -5$, $x = 2$			
(b)	Im 2	_		 3±2i plotted correctly in quadrants 1 and 4 with some evidence of symmetry dependent on the final M mark being awarded in part (a). Their other two roots plotted correctly. 			
	<u>-5</u>	2 3	Re	Satisfies at least one of the criteria.	B1ft		
	-2	`		Satisfies both criteria with some indication of scale or coordinates stated. All points (arrows) must be in the correct positions relative to each other.	B1ft		
					(2)		
					9		

Question Number	Scheme	1	Notes	Marks	
8.	$S(a,0), B(q,r), C\left(-a, -\frac{2ar}{q-a}\right) \text{ or } C(-a, -3ar)$				
(a)	$m = \frac{r - 0}{q - a}$		Correct gradien	at using $(a, 0)$ and (q, r) (Can be implied)	B1
	• $y = \frac{r}{q-a}(x-a)$ or • $y-r = \frac{r}{q-a}(x-q)$ • $0 = \frac{ra}{q-a} + "c" \Rightarrow "c" = -\frac{1}{q}$ leading to $(q-a)y = r(x-a)^*$	$\frac{ra}{-a}$ and $y = \frac{1}{q}$	$\frac{r}{r-a}x - \frac{ra}{q-a}$	Correct straight line method	M1
	leading to $(q-a)y = r(x-a)^*$			cso	A1*
(b)	$C\left(\left\{-a\right\}, -\frac{2ar}{q-a}\right) \text{ or height } OCS = \frac{2ar}{q-a}$ $-\frac{2ar}{q-a} \text{ or } \frac{2ar}{q-a}$				B1
	$\frac{2ar}{q-a} = 3r \text{or} \frac{1}{2}(a)\left(\frac{2ar}{q-a}\right) = 3\left(\frac{1}{2}\right)(a)(r) \implies \dots$ Applies height OCS = $3r$ or applies $Area(OSC) = 3Area(OSB)$ and rearranges to give $\lambda a = \mu q$ where λ, μ are numerical values.				M1
	$\Rightarrow 5a = 3q$			$5a = 3q \text{ or } a = \frac{3}{5}q$	A1
	$\Delta reg(ORC) = A\left(\frac{1}{r}\right)\left(\frac{3q}{r}\right)r$		dependent on	the previous M mark	
	Area $(OBC) = 4\left(\frac{1}{2}\right)\left(\frac{3q}{5}\right)r$ dependent on the previous M mark Uses their $a = \frac{3}{5}q$ and applies a correct method to find Area (OBC) in terms of only a and r				
	$=\frac{6}{5}qr(*)$	/	1	$\frac{\text{n terms of only } q \text{ and } r}{\frac{6}{5}qr}$	A1* cso
					(5)
	Alternative Method (Similar Triang	gles)			8
(b)	$\frac{3r}{2a} = \frac{r}{q - a}$		$\frac{3r}{2a}$	$\frac{1}{q} = \frac{r}{q-a}$ or equivalent	B1
	$\frac{3r}{2a} = \frac{r}{q-a} \implies \dots$		1	uivalent and rearranges are numerical values.	M1
	then apply the original mark sch		n & Notes		
8. (a)	Note The first two marks B1M1 can be gained together by applying the formula $\frac{y-y_1}{y_2-y_1} = \frac{x}{x}$				
	to give $\frac{y-0}{r-0} = \frac{x-a}{q-a}$				
(b)	Note If a candidate uses either -	$-\frac{2ar}{q-a}$ or $-3r$	they can get 1 st M1	but not 2 nd M1 in (b).	

Question Number	Scheme	Notes	Marks		
9.	f(n)	1			
	$f(1) = 4^2 + 5 = 21$		f(1) = 21 is the minimum	B1	
	$f(k+1) - f(k) = 4^{k+2} + 5^{2(k+1)-1} - (4^{k+1} + 5^{2k-1})$	Attempts $f(k+1) - f(k)$	M1		
	$f(k+1) - f(k) = 3(4^{k+1}) + 24(5^{2k-1})$				
	$= 3(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$	Ei4h a	$3(4^{k+1}+5^{2k-1})$ or $3f(k); 21(5^{2k-1})$	A 1. A 1	
	or = $24(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$	Eithe	$24(4^{k+1}+5^{2k-1}) \text{ or } 24f(k); -21(4^{k+1})$	A1; A1	
	$f(k+1) = 3f(k) + 21(5^{2k-1}) + f(k)$ dependent on at least one of the previous accuracy marks being awarde				
	or $f(k+1) = 24f(k) - 21(4^{k+1}) + f(k)$		Makes $f(k+1)$ the subject	dM1	
	If the result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for } n = k}$	$ext{le for } n = k + $	1. As the result has been shown to be	A1 cso	
	true for $n = 1$, then the result is is true for all $n \in \mathbb{D}^+$.				
WAY 2	General Method: Using $f(k+1) - mf(k)$				
	$f(1) = 4^2 + 5 = 21$	f(1) = 21 is the minimum	B1		
	$f(k+1) - mf(k) = 4^{k+2} + 5^{2(k+1)-1} - m(4^{k+1} + 5^{2k-1})$ Attempts $f(k+1) - f(k) = 4^{k+2} + 5^{2(k+1)-1} - m(4^{k+1} + 5^{2k-1})$				
	$f(k+1) - mf(k) = (4-m)(4^{k+1}) + (25-m)(5^{k+1})$	5^{2k-1})			
	$= (4-m)(4^{k+1}+5^{2k-1})+21(5^{2k-1})$	(4-	$m)(4^{k+1}+5^{2k-1})$ or $(4-m)f(k)$; $21(5^{2k-1})$	A1; A1	
	or = $(25-m)(4^{k+1}+5^{2k-1})-21(4^{k+1})$	(25-n)	$n)(4^{k+1}+5^{2k-1})$ or $(25-m)f(k)$; $-21(4^{k+1})$		
	$f(k+1) = (4-m)f(k) + 21(5^{2k-1}) + mf(k)$	de de	pendent on at least one of the previous accuracy marks being awarded.	dM1	
	or $f(k+1) = (25-m)f(k) - 21(4^{k+1}) + mf(k)$	z)	Makes $f(k+1)$ the subject	UIVII	
	If the result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for } n = k}$	ue for n = k +	1, As the result has been shown to be	A1 cso	
	true for $n = 1$, then the	e result is is i	true for all $n \in \square^+$.	111 650	
WAY 3	$f(1) = 4^2 + 5 = 21$		f(1) = 21 is the minimum	B1	
	$f(k+1) = 4^{k+2} + 5^{2(k+1)-1}$		Attempts $f(k+1)$	M1	
	$f(k+1) = 4(4^{k+1}) + 25(5^{2k-1})$				
	$=4(4^{k+1}+5^{2k-1})+21(5^{2k-1})$	Either	$4(4^{k+1}+5^{2k-1})$ or $4f(k)$; $21(5^{2k-1})$	A1; A1	
	or = $25(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$	Eithei	$25(4^{k+1}+5^{2k-1})$ or $25f(k)$; $-21(4^{k+1})$	AI, AI	
	$f(k+1) = 4f(k) + 21(5^{2k-1})$ or $f(k+1) = 25f(k) - 21(4^{k+1})$	de	pendent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject	dM1	
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> , As the result has been shown to be				
	true for $n = 1$, then the result is is true for all $n \in \square^+$. Note Some candidates may set $f(k) = 21M$ and so may prove the following general results				

•
$$\{f(k+1) = 4f(k) + 21(5^{2k-1})\} \Rightarrow f(k+1) = 84M + 21(5^{2k-1})$$

•
$$\{f(k+1) = 25f(k) - 21(4^{k+1})\} \Rightarrow f(k+1) = 525M - 21(4^{k+1})$$