edexcel

Mark Scheme (Results)
Summer 2015

Pearson Edexcel International A Level in Further Pure Mathematics F2
(WFM02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA041576
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL I AL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- \quad The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

une 2015
 WFM02 Further Pure Mathematics F2 Mark Scheme

Any solutions with no algebra (eg sketch graph followed by critical values with no working) scores max B1B1

Question Number	Scheme	Notes	Marks
	$\overline{(r+6)(r+8)}$		
2(a)	$\frac{1}{2(r+6)}-\frac{1}{2(r+8)}$ ое	Correct partial fractions, any equivalent form	B1
			(1)
(b)	$=\left(2 \times \frac{1}{2}\right)\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{8}-\frac{1}{10}+\frac{1}{9}-\frac{1}{11} \ldots+\frac{1}{n+5}-\frac{1}{n+7}+\frac{1}{n+6}-\frac{1}{n+8}\right)$ Expands at least 3 terms at start and 2 at end (may be implied) The partial fractions obtained in (a) can be used without multiplying by 2. Fractions may be $\frac{1}{2} \times \frac{1}{7}-\frac{1}{2} \times \frac{1}{9}$ etc These comments apply to both M1 and A1		M1
	$=\frac{1}{7}+\frac{1}{8}-\frac{1}{n+7}-\frac{1}{n+8}$	Identifies the terms that do not cancel	A1
	$=\frac{15(n+7)(n+8)-56(2 n+15)}{56(n+7)(n+8)}$	Attempt common denominator Must have multiplied the fractions from (a) by 2 now	M1
	$=\frac{n(15 n+113)}{56(n+7)(n+8)}$		A1cso
			(4)
			Total 5

Question Number	Scheme	Notes	Marks
6(a)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=2 \sin x$		
	AE: $m^{2}-2 m-3=0$		
	$m^{2}-2 m-3=0 \Rightarrow m=\ldots(-1,3)$	Forms Auxiliary Equation and attempts to solve (usual rules)	M1
	$(y=) A \mathrm{e}^{3 x}+B \mathrm{e}^{-x}$	Cao	A1
	PI: $(y=) p \sin x+q \cos x$	Correct form for PI	B1
	$\begin{aligned} & \left(y^{\prime}=\right) p \cos x-q \sin x \\ & \left(y^{\prime \prime}=\right)-p \sin x-q \cos x \end{aligned}$		
	$-p \sin x-q \cos x-2(p \cos x-q \sin x)-3 p \sin x-3 q \cos x=2 \sin x$ Differentiates twice and substitutes		M1
	$2 q-4 p=2,4 q+2 p=0$	Correct equations	A1
	$p=-\frac{2}{5}, q=\frac{1}{5}$	A1A1 both correct A1A0 one correct	A1A1
	$y=\frac{1}{5} \cos x-\frac{2}{5} \sin x$		
	$y=A \mathrm{e}^{3 x}+B \mathrm{e}^{-x}+\frac{1}{5} \cos x-\frac{2}{5} \sin x$	Follow through their p and q and their CF	B1ft
			(8)
(b)	$y^{\prime}=3 \mathrm{Ae}^{3 x}-\mathrm{Be}^{-x}-\frac{1}{5} \sin x-\frac{2}{5} \cos x$	Differentiates their GS	M1
	$0=A+B+\frac{1}{5}, 1=3 A-B-\frac{2}{5}$	M1: Uses the given conditions to give two equations in A and B A1: Correct equations	M1A1
	$A=\frac{3}{10}, B=-\frac{1}{2}$	Solves for A and B Both correct	A1
	$y=\frac{3}{10} \mathrm{e}^{3 x}-\frac{1}{2} \mathrm{e}^{-x}+\frac{1}{5} \cos x-\frac{2}{5} \sin x$	Sub their values of A and B in their GS	A1ft
			(5)
			Total 13

Question Number	Scheme	Notes	Marks
7(a)	$\theta=\frac{\pi}{3} \Rightarrow r=\sqrt{3} \sin \left(\frac{\pi}{3}\right)=\frac{3}{2}$	Attempt to verify coordinates in at least one of the polar equations	M1
	$\theta=\frac{\pi}{3} \Rightarrow r=1+\cos \left(\frac{\pi}{3}\right)=\frac{3}{2}$	Coordinates verified in both curves (Coordinate brackets not needed)	A1
			(2)
	Alternative:		
	Equate $r \mathrm{~s}: \sqrt{3} \sin \theta=1+\cos \theta$ and verify (by substitution) that $\theta=\frac{\pi}{3}$ is a solution or solve by using $t=\tan \frac{\theta}{2}$ or writing $\frac{\sqrt{3}}{2} \sin \theta-\frac{1}{2} \cos \theta=\frac{1}{2} \quad \sin \left(\theta-\frac{\pi}{6}\right)=\frac{1}{2} \quad \theta=\frac{\pi}{3}$ Squaring the original equation allowed as θ is known to be between 0 and π		M1
	Use $\theta=\frac{\pi}{3}$ in either equation to obtain $r=\frac{3}{2}$		A1
(b)	$\frac{1}{2} \int(\sqrt{3} \sin \theta)^{2} \mathrm{~d} \theta, \quad \frac{1}{2} \int(1+\cos \theta)^{2} \mathrm{~d} \theta$	Correct formula used on at least one curve (1/2 may appear later) Integrals may be separate or added or subtracted.	M1
	$=\frac{1}{2} \int 3 \sin ^{2} \theta \mathrm{~d} \theta, \quad \frac{1}{2} \int\left(1+2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta$		
	$=\left(\frac{1}{2}\right) \int \frac{3}{2}(1-\cos 2 \theta) \mathrm{d} \theta, \quad\left(\frac{1}{2}\right) \int\left(1+2 \cos \theta+\frac{1}{2}(1+\cos 2 \theta)\right) \mathrm{d} \theta$ Attempt to use $\sin ^{2} \theta$ or $\cos ^{2} \theta= \pm \frac{1}{2} \pm \frac{1}{2} \cos 2 \theta$ on either integral Not dependent $1 / 2$ may be missing		M1
	$=\frac{3}{4}\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{(0)}^{\left(\frac{\pi}{3}\right)}, \quad \frac{1}{2}\left[\frac{3}{2} \theta+2 \sin \theta+\frac{1}{4} \sin 2 \theta\right]_{\left(\frac{\pi}{3}\right)}^{(\pi)}$ Correct integration (ignore limits) A1A1 or A1A0		A1, A1
	$R=\frac{3}{4}\left[\frac{\pi}{3}-\frac{\sqrt{3}}{4}(-0)\right]+\frac{1}{2}\left[\frac{3 \pi}{2}-\left(\frac{\pi}{2}+\sqrt{3}+\frac{\sqrt{3}}{8}\right)\right]\left[\begin{array}{l}\text { Correct use of limits for both } \\ \text { integrals } \\ \text { Integrals must be added. } \\ \text { Dep on both previous M marks }\end{array}\right.$		ddM1
	$=\frac{3}{4}(\pi-\sqrt{3})$	Сао No equivalents allowed	A1
			(6)
			Total 8

Question Number	Scheme		Notes	Marks
8(a)	$\left(z+\frac{1}{z}\right)^{3}\left(z-\frac{1}{z}\right)^{3}=\left(z^{2}-\frac{1}{z^{2}}\right)^{3}$			
	$=z^{6}-3 z^{2}+\frac{3}{z^{2}}-z^{-6}$	M1: Atte	pt to expand	M1A1
		A1: Corr	expansion	
	$=z^{6}-\frac{1}{z^{6}}-3\left(z^{2}-\frac{1}{z^{2}}\right)$	Correct	swer with no errors seen	A1
				(3)
$\begin{gathered} \hline \text { (a) } \\ \text { ALT } \end{gathered}$	$\left(z+\frac{1}{z}\right)^{3}=z^{3}+3 z+\frac{3}{z}+\frac{1}{z^{3}},\left(z-\frac{1}{z}\right)^{3}=z^{3}-3 z+\frac{3}{z}-\frac{1}{z^{3}}$			M1A1
	M1: Attempt to expand both cubic brackets A1: Correct expansions			
	$=z^{6}-\frac{1}{z^{6}}-3\left(z^{2}-\frac{1}{z^{2}}\right)$	Correct answer with no errors		A1
	$z^{n}=\cos n \theta+i \sin n \theta$			(3)
(b)(i)(ii)		Correct application of de Moivre		B1
	$z^{-n}=\cos (-n \theta)+i \sin (-n \theta)= \pm \cos n \theta \pm \sin n \theta$ but must be different from their z^{n}	Attempt z^{-n}		M1
	$z^{n}+\frac{1}{z^{n}}=2 \cos n \theta^{*}, z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta^{*}$	$z^{-n}=\cos n \theta-i \sin n \theta$ must be seen		A1*
				(3)
(c)	$\left(z+\frac{1}{z}\right)^{3}\left(z-\frac{1}{z}\right)^{3}=(2 \cos \theta)^{3}(2 i \sin \theta)^{3}$			B1
	$z^{6}-\frac{1}{z^{6}}-3\left(z^{2}-\frac{1}{z^{2}}\right)=2 i \sin 6 \theta-6 i \sin 2 \theta$	Follow through their k in place of 3		B1ft
	$-64 i \sin ^{3} \theta \cos ^{3} \theta=2 i \sin 6 \theta-6 i \sin 2 \theta$	Equating right hand sides and simplifying $2^{3} \times(2 \mathrm{i})^{3}$ (B mark needed for each side to gain M mark)		M1
	$\cos ^{3} \theta \sin ^{3} \theta=\frac{1}{32}(3 \sin 2 \theta-\sin 6 \theta) *$			A1cso
				(4)
(d)	$\int_{0}^{\frac{\pi}{8}} \cos ^{3} \theta \sin ^{3} \theta \mathrm{~d} \theta=\int_{0}^{\frac{\pi}{8}} \frac{1}{32}(3 \sin 2 \theta-\sin 6 \theta) \mathrm{d} \theta$			
	$=\frac{1}{32}\left[-\frac{3}{2} \cos 2 \theta+\frac{1}{6} \cos 6 \theta\right]_{0}^{\frac{\pi}{8}}$		M1: $p \cos 2 \theta+q \cos 6 \theta$	M1A1
			A1: Correct integration Differentiation scores M0A0	
	$=\frac{1}{32}\left[\left(-\frac{3}{2 \sqrt{2}}-\frac{1}{6 \sqrt{2}}\right)-\left(-\frac{3}{2}+\frac{1}{6}\right)\right]=\frac{1}{32}\left(\frac{4}{3}-\frac{5 \sqrt{2}}{6}\right)$		dM1: Correct use of limits - lower limit to have non-zero result. Dep on previous M mark A1: Cao (oe) but must be exact	dM1A1
				(4)
				Total 14

