Mark Scheme (Results)

January 2015

Pearson Edexcel International A Level in Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

Question Number	Scheme	Notes	Marks
2	$\mathrm{f}(x)=x^{3}-3 x^{2}+\frac{1}{2 \sqrt{x^{5}}}+2$		
(a)	$f(2)=\ldots$ and $f(3)=\ldots$	Attempts both $\mathrm{f}(2)$ and $\mathrm{f}(3)$	M1
	$f(2)=-1.9116 . . \quad, \quad f(3)=2.032 \ldots$ Sign change (and $\mathrm{f}(x)$ is continuous) therefore a root α exists between $x=2$ and $x=3$	Both values correct : $\mathrm{f}(2)=-1.9116$. (awrt -1.9), and $f(3)=2.032 \ldots$ (awrt 2.0 or e.g. $2+\frac{\sqrt{3}}{54}$), sign change (or equivalent) and conclusion	A1
			(2)
(b)		M1: $x^{n} \rightarrow x^{n-1}$	
	$\mathrm{f}^{\prime}(x)=3 x^{2}-6 x-\frac{5}{4} x^{-3.5}$	A1: $3 x^{2}-6 x$ A1: $-\frac{5}{4} x^{-3.5}$ or equivalent un-simplified and no other terms (+c loses this mark)	M1A1A1
	$\alpha=3-\frac{2.032075015}{8.973270821}$	Correct attempt at Newton-Raphson using their values of $f(3)$ and $f^{\prime}(3)$.	M1
	$\alpha=2.774$	Cao (Ignore any subsequent applications)	A1
	Correct derivative followed by corre Correct answer with no work	t answer scores full marks in (b) ng scores no marks in (b)	
			(5)
	NB if the answer is incorrect it must be clea the Newton-Raphson process. So that just other evidence	that both $\mathrm{f}(3)$ and $\mathrm{f}^{\prime}(3)$ are being used in $-\frac{f(3)}{f^{\prime}(3)}$ with an incorrect answer and no scores M0.	
			Total 7

Question Number	Scheme	Notes	Marks
4(a)	$y^{2}=12 x \Rightarrow y=\sqrt{12} x^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} \sqrt{12} x^{-\frac{1}{2}}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=k x^{-\frac{1}{2}}$	M1
	$y^{2}=12 x \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=12$	$\alpha y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\beta$	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} p} \cdot \frac{\mathrm{~d} p}{\mathrm{~d} x}=6 \cdot \frac{1}{6 p}$	their $\frac{\mathrm{d} y}{\mathrm{~d} p} \times\left(\frac{1}{\text { their } \frac{\mathrm{d} x}{\mathrm{~d} p}}\right)$	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \sqrt{12} x^{-\frac{1}{2}} \text { or } 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=12 \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=6 \cdot \frac{1}{6 p}$ or equivalent expressions	Correct differentiation	A1
	$m_{T}=\frac{1}{p} \Rightarrow m_{N}=-p$	Correct perpendicular gradient rule	M1
	$y-6 p=-p\left(x-3 p^{2}\right)$	$\begin{aligned} & y-6 p=\text { their } m_{N}\left(x-3 p^{2}\right) \text { or } \\ & y=m x+c \text { with their } m_{N} \text { and }\left(3 p^{2}, 6 p\right) \text { in } \end{aligned}$ an attempt to find ${ }^{\prime} c^{\prime}$. Their m_{N} must have come from calculus and should be a function of p which is not their tangent gradient.	M1
	$y+p x=6 p+3 p^{3} *$	Achieves printed answer with no errors	A1*
			(5)
(b)	$p=2 \Rightarrow y+2 x=12+24$	Substitutes the given value of p into the normal	M1
	$y+\frac{y^{2}}{6}=36$	Substitutes to obtain an equation in one variable (x, y or " q ")	M1
	$y^{2}+6 y-216=0$		
	$(y+18)(y-12)=0 \Rightarrow y=$	Solves their 3TQ	M1
	$y=-18 \Rightarrow x=27$	A1: One correct coordinate	A1, A1
		A1. Both coordinates correct	(5)
(c)	Focus is (3,0) or $a=3$ or $\mathrm{OS}=3$	Must be seen or used in (c)	B1
	$y=0 \Rightarrow x=18$		
	$\frac{1}{1}(18-3)(12)+\frac{1}{2}(18-3)(18)$	M1: Correct attempt at area	M1A1
		A1: Correct expression	
	$\mathrm{A}=225$	Correct area	A1
			(4)
			Total 14

Question Number	Scheme	Notes	Marks
5(a)	$\alpha+\beta=-\frac{3}{4}, \quad \alpha \beta=\frac{1}{4}$		B1, B1
			(2)
(b)	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\frac{9}{16}-\frac{1}{2}=\frac{1}{16} \quad$M1:Us A1: $\frac{1}{16}$	of $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$ cso (allow 0.0625)	M1 A1
			(2)
(c)	Sum $4 \alpha-\beta+4 \beta-\alpha=3(\alpha+\beta)=-\frac{9}{4}$	Attempt numerical sum	M1
	$\text { Product } \begin{aligned} (4 \alpha-\beta)(4 \beta-\alpha) & =17 \alpha \beta-4\left(\alpha^{2}+\beta^{2}\right) \\ & =\frac{17}{4}-\frac{1}{4}=4 \end{aligned}$	Attempt numerical product	M1
	$x^{2}-\left(-\frac{9}{4}\right) x+4(=0)$	Uses $x^{2}-($ sum $) x+($ prod $)$ with sum, prod numerical ($=0$ not reqd.)	M1
	$4 x^{2}+9 x+16=0$	Any multiple (including $=0$)	A1
			(4)
			Total 8
	Alternative: Finds roots explicitly		
(a)	$x=-\frac{3}{8} \pm \frac{\sqrt{7}}{8} \mathrm{i}$		
	$\alpha+\beta=-\frac{3}{8}+\frac{\sqrt{7}}{8} \mathrm{i}-\frac{3}{8}-\frac{\sqrt{7}}{8} \mathrm{i}=-\frac{3}{4}$		B1
	$\alpha \beta=\left(-\frac{3}{8}+\frac{\sqrt{7}}{8} \mathrm{i}\right)\left(-\frac{3}{8}-\frac{\sqrt{7}}{8} \mathrm{i}\right)=\frac{1}{4}$		B1
			(2)
(b)	$\alpha^{2}+\beta^{2}=\left(-\frac{3}{8}+\frac{\sqrt{7}}{8} \mathrm{i}\right)^{2}+\left(-\frac{3}{8}-\frac{\sqrt{7}}{8} \mathrm{i}\right)^{2}=\frac{1}{16}$	M1: Substitutes their α and β and attempt to square and add both brackets $\text { A1: } \frac{1}{16} \text { cso (allow } 0.0625 \text {) }$	M1 A1
			(2)
(c)	$4 \alpha-\beta=-\frac{9}{8}+\frac{5 \sqrt{7}}{8} \mathrm{i}, 4 \beta-\alpha=-\frac{9}{8}-\frac{5 \sqrt{7}}{8} \mathrm{i}$		
	$\mathrm{f}(x)=\left(x-\left(-\frac{9}{8}+\frac{5 \sqrt{7}}{8} \mathrm{i}\right)\right)\left(x-\left(-\frac{9}{8}-\frac{5 \sqrt{7}}{8} \mathrm{i}\right)\right)$	Uses $(x-(4 \alpha-\beta))(x-(4 \beta-\alpha))$ With numerical values (May expand first)	M1
	$\mathrm{f}(x)=x^{2}+x\left(-\frac{9}{8}-\frac{5 \sqrt{7}}{8} \mathrm{i}\right)-x\left(-\frac{9}{8}+\frac{5 \sqrt{7}}{8} \mathrm{i}\right)+\left(-\frac{9}{8}+\frac{5 \sqrt{7}}{8} \mathrm{i}\right)\left(-\frac{9}{8}-\frac{5 \sqrt{7}}{8} \mathrm{i}\right)$ Attempt to expand (may occur in terms of α and β but must be numerical for both M's)		M1
	$=x^{2}+\frac{9}{4} x+4(=0)$	Collects terms ($=0$ not reqd.)	M1
	$4 x^{2}+9 x+16=0$	Any multiple (including $=0$)	A1
			(4)

Question Number	Scheme	Notes	Marks
6(i)(a)	A: Stretch scale factor 3 parallel to the x-axis	B1: Stretch	B1B1
		B1: SF 3 parallel to (or along) x-axis Allow e.g. horizontal stretch SF 3 (Ignore any reference to the origin)	
			(2)
(b)	B: Rotation 210 degrees (anticlockwise) about $(0,0)$ or about O	B1: Rotation about (0,0)	B1B1
		B1: 210 degrees (anticlockwise) (or equivalent e.g. -150° or 150° clockwise). Allow equivalents in radians.	
			(2)
(c)	$\mathbf{C}=\mathbf{B} \mathbf{A}=\left(\begin{array}{cc}-\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2}\end{array}\right)\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$	Attempts BA (This statement is sufficient)	M1
	$=\left(\begin{array}{cc}-\frac{3 \sqrt{3}}{2} & \frac{1}{2} \\ -\frac{3}{2} & -\frac{\sqrt{3}}{2}\end{array}\right)$	Correct matrix	A1
			(2)
(ii)	$\begin{gathered} \operatorname{det} \mathbf{M}= \\ (2 k+5) \cdot k-1 \times(-4)\left(=2 k^{2}+5 k+4\right) \end{gathered}$	M1: Correct attempt at determinant	M1A1
		A1: Correct determinant (allow unsimplified)	
	$b^{2}-4 a c=25-32$	Attempts discriminant or uses quadratic formula	M1
	$b^{2}-4 a c<0$ So no real roots so $\operatorname{det} \mathbf{M} \neq 0$	Convincing explanation and conclusion with no previous errors	A1
			(4)
			Total 10
$\begin{gathered} \text { (ii) } \\ \text { Way } 2 \end{gathered}$	$(2 k+5) \cdot k-1 \times(-4)\left(=2 k^{2}+5 k+4\right)$	M1: Correct attempt at determinant	M1A1
		A1: Correct determinant (allow unsimplified)	
	$=2\left(k+\frac{5}{4}\right)^{2}+\frac{7}{8}$	Attempts to complete the square:	M1
	$\begin{gathered} \operatorname{det} M>\mathbf{0} \forall \boldsymbol{k} \\ \text { Therefore } \operatorname{det} \mathbf{M} \neq \mathbf{0} \end{gathered}$	Convincing explanation and conclusion with no previous errors	A1
$\begin{gathered} \text { (ii) } \\ \text { Way } 3 \end{gathered}$	$(2 k+5) \cdot k-1 \times(-4)\left(=2 k^{2}+5 k+4\right)$	M1: Correct attempt at determinant	M1A1
		A1: Correct determinant (allow unsimplified)	
	$\frac{\mathrm{d}(\mathrm{dec}(\mathbf{M})}{\mathrm{d} k}=4 k+5=0 \Rightarrow k=-\frac{5}{4}$		
	$k=-\frac{5}{4} \Rightarrow \operatorname{det} \mathbf{M}=\frac{7}{8}$	Attempts coordinates of turning point	M1
	Minimum $\operatorname{det} \mathbf{M}$ is $\frac{7}{8}$ therefore $\operatorname{det} M \neq 0$	Convincing explanation and conclusion with no previous errors	A1

Question Number	Scheme	Notes	Marks
7	$\sum_{r=1}^{n}(r+a)(r+b)=\frac{1}{6} n(2 n+11)(n-1)$		
(a)	$(r+a)(r+b)=r^{2}+r a+r b+a b$ $\sum^{n}(r+a)(r+b)=1$		B1
	$\sum_{r=1}^{n}(r+a)(r+b)=\frac{1}{6} n(n+1)(2 n+1)+(a+b) \frac{1}{2} n(n+1)+a b n$		M1A1B1
	M1: Attempt to use one of the standard formulae correctly $\text { A1: } \frac{1}{6} n(n+1)(2 n+1)+(a+b) \frac{1}{2} n(n+1)$ B1: $a b n$		
	$\frac{1}{6} n[(n+1)(2 n+1)+3(a+b)(n+1)+6 a b]=\frac{1}{6} n(2 n+11)(n-1)$		
	$(n+1)(2 n+1)+3(a+b)(n+1)+6 a b=2 n^{2}+9 n-11$		
	$2 n^{2}+3 n+1+3(a+b)(n+1)+6 a b=2 n^{2}+9 n-11$		
	$\begin{aligned} & 3+3 a+3 b=9,3 a+3 b+1+6 a b=-11 \\ & (a+b=2, a b=-3) \end{aligned}$	M1: Compares coefficients to obtain at least one equation in a and b	M1M1M1
		M1: One correct equation	
		M1: Both equations correct	
	$b=-1, a=3$	Both values correct. This can be withheld if $b=3, a=-1$ is not rejected.	A1
			(8)
(b)	$\sum_{r=9}^{20}(r+a)(r+b)$		
	$\sum_{r=9}^{20}(r+a)(r+b)=\mathrm{f}(20)-\mathrm{f}(8$ or 9$)$	Use of $f(20)-f(8 o r 9)$	M1
	$=\frac{1}{6}(20)(51)(19)-\frac{1}{6}(8)(27)(7)$	Correct (possibly un-simplified) numerical expression	A1
	$=3230-252=2978$	cao	A1
			(3)
			Total 11

