

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Statistics 1 (WST01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code IA040141
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question	Scheme	Marks
1. (a)	$S_{yy} = 39418 - \frac{560^2}{8}$	M1
	8 = 218	A1cao (2)
		711cao (2)
(b)	$[r=]\frac{-710}{\sqrt{"218"\times 2587.5}}$	M1
	$\sqrt{218} \times 2587.5$ = -0.945344 awrt -0.945	A1 (2)
	= 0.545544 <u>awrt</u> 0.545	A1 (2)
(c)	As <u>age increases</u> , <u>volume/blood</u> (pumped) <u>decreases</u> (o.e.)	B1 (1)
(d)	Yes as r is close to -1 (if $r < -0.5$) or Yes as r is close to 1 (if $r > 0.5$) For ft, if $-0.5 \le r \le 0.5$ " No since r is close to 0"	B1ft (1)
(e)	$b = \frac{-710}{2587.5} = -0.27439 \qquad \text{(allow } \frac{-284}{1035}\text{)} \qquad \text{awrt} - 0.27$	M1 A1
	$a = \frac{560}{9}$ - 'their b' $\times \frac{370}{9}$ [= 82.690] so $\underline{y} = 82.7 - 0.274x$	M1, A1
	8 8	(4)
(f)(i)	$(y = 82.7 - 0.274 \times 40 =) 71.74$ = awrt <u>72</u>	B1
(ii)	Should be reliable since interpolation (o.e.)	B1 (2)
		[12]
	Notes	
(a)	M1 for a correct expression for S_{yy} A1 for 218 (condone 218.0)	
(b)	M1 for attempt at correct formula with their $S_{yy}(>0)$ and given S_{xx} , S_{xy} in the corr	ect places
	Condone missing "-" for M1 -0.95 with no expression seen scores M1A0, awrt – 0.945 with no working scores M1A1	
(c)	B1 Must mention "age" and "volume" or "blood (pumped)" No ft.	
(d)	B1ft must comment on supporting and state: $\frac{\text{high/strong/clear}}{\text{high/strong/clear}}$ (negative or positive) correlation 'points lie close to a line' is B0 since there is no evidence of this. Do not follow through $ r > 1$.	
(e)	1^{st} M1 for a correct expression for b . Condone missing "-" 1^{st} A1 for awrt -0.27 or allow exact fraction. 2^{nd} M1 for a correct method for a . Follow through their value of b for a correct equation for y and x with $a = \text{awrt } 82.7$ and $b = \text{awrt } -0.274$ No fractions	
(f)	 1st B1 for awrt 72 2nd B1 for a comment that suggests it <u>is</u> reliable since 40 is within the range of the ages/x-values of the data <u>or</u> interpolation NB "it is reliable since it is in the range" is B0 since "it" is not explicit enough Condone extra non-relevant comments but penalise contradictory comments. e.g. "reliable since 40 is within the range (of ages) <u>and 72 within range of volumes</u>" is B1 since <u>irrelevant</u> 	

Question	Scheme	Marks	S
2. (a)	Width = $\frac{5}{3} \times 1.5 = 2.5$ (cm)	B1	
	Area = $6 \times 1.5 = 9$ cm ² has frequency = 12 so 1.5 cm ² = 2 people (o.e.)	M1	
	Frequency of 10 corresponds to area of 7.5 so height = 3 (cm)	A1 ((3)
(b)	$Q_2 = [2.5 +] \frac{(25/25.5 - 16)}{12} \times 3 = 4.75$ (or 4.875 if use $n + 1$) awrt 4.75	M1 A1	
	$\frac{Q_2 - [2.5 +]}{12}$	1411 711	
() (1)		((2)
(c)(i)	$[\bar{x} =] \frac{394}{9} = 7.88$ (*)	B1cso	
(**)	$[\overline{x} =] \frac{394}{50} = 7.88$ (*) $[\sigma_x =] \sqrt{\frac{6500}{50} - \overline{x}^2} = \sqrt{67.9056}$		
(11)	$[\sigma =] \sqrt{\frac{6500}{500}} - \overline{x}^2 = \sqrt{67.9056}$	M1A1	
	= awrt 8.24 (Accept $s =$ awrt 8.32)	A1 ((4)
(d)	$\overline{x} > 0$	D16	
(u)	$\overline{x} > Q_2$	B1ft	(2)
	So positive (skew)	dB1 ((2)
(e) (i)	There is <u>no effect</u> on the mean	B1	
(ii)	The median will increase	B1	
(iii)	The standard deviation will decrease		(3)
		[14]	
	Notes		
(a)	M1 for forming a relationship between area and no. of people $\underline{\text{or}}$ "their width" \times "their hei	ght''=7.5	
	$\underline{\text{or}} \text{ for } \frac{3h}{10} = \frac{9}{12} \text{ oe}$		
	A1 for height of 3 (cm)		
	NOTE: the common incorrect answer width = 3 and height = 2.5 scores B0M1A0		
(b)	M1 for a correct fraction $\left[\frac{9}{12}\right] \times 3$. Ignore end point but must be +.		
	May be seen in an equivalent approximate $(x-2.5)$ $25-16$		
	May be seen in an equivalent expression e.g. $\frac{(x-2.5)}{5.5-2.5} = \frac{25-16}{28-16}$		
	Allow use of $(n + 1)$ giving 4.875		
	NB May work down so look out for $[5.5] - \frac{28-25}{12} \times 3$, etc.		
() ()	12 125 12 1 10 0 0 155 1 225		
(c)(i)	B1 for $\frac{394}{50}$ or for fully correct expression seen $\frac{16 \times 1.25 + 12 \times 4 + 10 \times 8 + 8 \times 15.5 + 4 \times 30.5}{50}$		
(ii)	M1 for a correct expression must have 6500, 50 and 7.88. (square root not necess	ary for M1	l)
. ,	1 st A1 for a correct expression which must have square root	•	,
	2^{nd} A1 for awrt 8.24 (use of $s = \text{awrt } 8.32$). Condone incorrect labelling if awrt 8.24 is four	nd.	
(T)	at .		
(d)	1 st B1ft for a correct comparison of $\bar{x} = 7.88$ and their Q_2 (this may be seen embedon	ded in	
	another formula i.e. 3(mean-median)/s.d.)		
	$Q_3 - Q_2 > Q_2 - Q_1$ is B0 unless Q_1 and Q_3 have been found. ($Q_1 = 1.95/1.99$, $Q_3 = 0.00$	10.25/10.8	1)
	2 nd dB1 Dependent on the 1 st B1 and for concluding "positive" skew.		
	Note: if their $Q_2 > 7.88$, then B0. Positive correlation is B0.		

Question	Scheme	Marks
3. (a)	$P(X = 1) = F(1) = \underline{0.2}$	B1
	e.g. $P(X = 3) = F(3) - F(1) = \underline{0.3}$	M1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 A1
		(4)
(b)	$P(2 < X \le 6) = P(X = 3) + P(X = 5)$	M1
	= 0.7	A1
		(2)
(c)	$F(4) = P(X \le 4) = P(X \le 3) = F(3) = 0.5$	B1
		(1)
		[7]
	Notes	
(a)	B1 for $P(X = 1) = 0.2$ or $P(1) = 0.2$	
	M1 for a correct method using $F(x)$ to find one other probability (may be implied correct probability)	l by one other
	1^{st} A1 for any two correct probabilities from $P(X = 3) = 0.3$, $P(X = 5) = 0.4$, $P(X = 7) = 0.4$	7) = 0.1
	2 nd A1 for a fully correct probability distribution.	0.1
	For both A marks, condone missing/incorrect labels, but the probabilities m	ust be
	associated with the correct x-values	
(b)	M1 for $P(X = 3) + P(X = 5)$ (may ft their values) or $F(5) - F(1)$	
	A1 for 0.7 oe	
(c)	B1 for 0.5 oe	

Questio	on	Scheme	Marl	ks
4. (, ,		B1	(1)
((b)	$P(Y < \mu) = 0.5 \text{ or } [P(\mu < Y < 17) =] 0.6 - 0.5$ = <u>0.1</u>	M1 A1	(2)
((c)	$[P(Y < \mu \mid Y < 17) =]$		(=)
		$\frac{P(Y < \mu)}{P(Y < 17)}$ or $\frac{0.5}{0.6}$	M1	
		$=\frac{5}{6}$ awrt <u>0.833</u>	A1	
				(2)
		NT. 4	[5]	
	(.)	Notes Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
((a)	B1 for 0.4 Note: do not isw if 0.6554 is given as answer after 0.4 has been seen.		
((b)	M1 for indicating $P(Y < \mu) = 0.5$ (may be seen on a diagram)		
	(c)	M1 for a correct statement $\frac{P(Y < \mu)}{P(Y < 17)}$ or a correct ratio of probabilities		
		May be implied by $\frac{P(Y < \mu)}{0.6}$ or $\frac{0.5}{P(Y < 17)}$		

(b) $4a+(0)+4a+16c=5$ or $8a+16c=5$ $8a+3.2=5$ so $a=0.225$ or $\frac{9}{40}$ All $2a+b+c=1$ so $b=1-"0.2"-2\times"0.225"$ MI Alft (c) $Var(X)=5-0.8^2$, $=\frac{4.36}{4.36}$ MIA1 (d) $[5-3E(X)=5-3\times0.8]$ (e) $3^2Var(X)=9\times4.36$, or $[E(Y^2)-(E(Y))^2]=46-2.6^2=\frac{39.24}{4.36}$ awrt $\frac{39.2}{4.36}$ MI, All (f) $Y\ge0\Rightarrow 5-3X\ge0\Rightarrow 5\ge3X$ $X\le1\frac{2}{3}$ $[P(Y\ge0)=P(X\le0)=]$ $P(X=-2)+P(X=0)$ or $a+b$ MI $=\frac{0.575}{4.36}$ or $\frac{23}{4.36}$ Alft (4) $\frac{8}{4.36}$ (5) $\frac{3}{4.36}$ MI for forming an equation using $E(X^2)=5$ with at least 2 non-zero products correct (6) $\frac{1}{4}$ MI for forming an equation using $E(X^2)=5$ with at least 2 non-zero products correct (7) $\frac{3}{4}$ Alft for 0.225 or any equivalent fraction $\frac{3}{4}$ MI for forming an equation for b using the sum of their prob'=1, (award MI if their($2a+b+c)=1$) 2^{nd} Alft for 0.35 or a value of b such that their $2a+b+c=1$ (where a,b and c are all probabilities) (a) MI for a correct expression $5-0.8^2$ (Division by 4 at any stage is M0) (b) MI for $9\times Var(X)$ ft their $Var(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ for 1^{16} Al for 1.36 Alft for 1.36 Alft for one of 1.36 Alft for 1.36 Alft for one of 1.36 Alft for their 1.36 Alft for their 1.36 Alft for their 1.36 Alft for their 1.36 Alft for one of 1.36 Alft for one of 1.36 Alft for one of 1.36 Alft for their 1.36 Alft for their 1.36 Alft for their 1.36 Alft for their 1.36 Alft for one of 1.36 Alft for their 1.36 Alft for altempting to convert 1.36 and 1.36 and 1.36 are all probabilities)	Question	Scheme	Marks
(b) $4a+(0)+4a+16c=5$ or $8a+16c=5$ $8a+3.2=5$ so $a=0.225$ or $\frac{9}{40}$ $A1$ $2a+b+c=1$ so $b=1-"0.2"-2\times"0.225"$ $b=0.35$ or $\frac{7}{20}$ $M1$ $A1R$ (c) $Var(X)=5-0.8^3$, $=4.36$ $M1A1$ (d) $[5-3E(X)=5-3\times0.8]$ $=\frac{2.6}{3^2Var(X)}=9\times4.36$, or $[E(Y^2)-(E(Y))^2]=46-2.6^2=\frac{39.24}{39.24}$ awrt $\frac{39.2}{39.2}$ $M1$, A1 $(F(Y \ge 0) = F(X \le 0) = F(X = -2) + F(X = 0) \text{ or } a+b$ $M1$ $=\frac{0.575}{40} \text{ or } \frac{23}{40}$ A1ft $(A1)$ $[15]$ Notes (a) M1 for forming an equation using $E(X)=0.8$ with at least 2 non-zero products correct (b) $\frac{18}{3}$ M1 for forming an equation using $E(X)=0.8$ with at least 2 non-zero products correct (b) $\frac{18}{3}$ M1 for forming an equation $\frac{18}{3}$ M2 for $\frac{23}{3}$ A1ft $\frac{23}{3}$ A1ft $\frac{18}{3}$ M1 for $\frac{23}{3}$ A1ft $\frac{23}{3$	5. (a)	-2a+(0)+2a+4c=0.8 or $4c=0.8$	M1
(b) $4a+(0)+4a+16c=5$ or $8a+16c=5$ $8a+3.2=5$ so $a=0.225$ or $\frac{9}{40}$ All $2a+b+c=1$ so $b=1-"0.2"-2\times"0.225"$ MI Alft (c) $Var(X)=5-0.8^2$, $=\frac{4.36}{4.36}$ MIA1 (d) $[5-3E(X)=5-3\times0.8]$ (e) $3^2Var(X)=9\times4.36$, or $[E(Y^2)-(E(Y))^2]=46-2.6^2=\frac{39.24}{4.36}$ awrt $\frac{39.2}{4.36}$ MI, All (f) $Y\ge0\Rightarrow 5-3X\ge0\Rightarrow 5\ge3X$ $X\le1\frac{2}{3}$ $[P(Y\ge0)=P(X\le0)=]$ $P(X=-2)+P(X=0)$ or $a+b$ MI $=\frac{0.575}{4.36}$ or $\frac{23}{4.36}$ Alft (4) $\frac{8}{4.36}$ (5) $\frac{3}{4.36}$ MI for forming an equation using $E(X^2)=5$ with at least 2 non-zero products correct (6) $\frac{1}{4}$ MI for forming an equation using $E(X^2)=5$ with at least 2 non-zero products correct (7) $\frac{3}{4}$ Alft for 0.225 or any equivalent fraction $\frac{3}{4}$ MI for forming an equation for b using the sum of their prob'=1, (award MI if their($2a+b+c)=1$) 2^{nd} Alft for 0.35 or a value of b such that their $2a+b+c=1$ (where a,b and c are all probabilities) (a) MI for a correct expression $5-0.8^2$ (Division by 4 at any stage is M0) (b) MI for $9\times Var(X)$ ft their $Var(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ for 1^{16} Al for 1.36 Alft for 1.36 Alft for one of 1.36 Alft for 1.36 Alft for one of 1.36 Alft for their 1.36 Alft for their 1.36 Alft for their 1.36 Alft for their 1.36 Alft for one of 1.36 Alft for one of 1.36 Alft for one of 1.36 Alft for their 1.36 Alft for their 1.36 Alft for their 1.36 Alft for their 1.36 Alft for one of 1.36 Alft for their 1.36 Alft for altempting to convert 1.36 and 1.36 and 1.36 are all probabilities)		$\underline{c} = 0.2$	
$8a + 3.2 = 5 \text{ so} \qquad \underline{a = 0.225} \text{ or } \frac{9}{40} \qquad \text{A1}$ $2a + b + c = 1 \text{ so } b = 1 - 0.2 - 2 \times 0.225 \qquad \qquad \underline{b = 0.35} \text{ or } \frac{7}{20} \qquad \qquad \text{A1} \text{ft}$ $b = 0.35 \text{ or } \frac{7}{20} \qquad \qquad \text{A1} \text{ft}$ $(c) \text{Var}(X) = 5 - 0.8^2, \qquad \qquad = \underline{4.36} \qquad \qquad \text{M1A1} \qquad \qquad (2)$ $(d) [5 - 3E(X) = 5 - 3 \times 0.8] \qquad \qquad = \underline{2.6} \qquad \qquad \text{B1}$ $(e) 3^2 \text{Var}(X) = 9 \times 4.36, \text{or } [E(Y^2) - (E(Y))^2] = 46 - 2.6^2 = \underline{39.24} \text{ awrt } \underline{39.2} \qquad \qquad \text{M1, A1}$ $[P(Y \ge 0) \Rightarrow 5 - 3X \ge 0 \Rightarrow 5 \ge 3X \qquad \qquad \qquad \text{M1}$ $[P(Y \ge 0) = P(X \le 0) =] P(X = -2) + P(X = 0) \text{or } a + b \qquad \qquad \text{M1}$ $= \underline{0.575} \text{ or } \frac{23}{40} \qquad \qquad \text{A1} \text{ft}$ $[15] \qquad \qquad$	(b)	4 . (0) . 4 . 16 . 5	$\mathbf{M1} \tag{2}$
$2a+b+c=1 \text{ so } b=1-"0.2"-2×"0.225"$ $b=0.35 \text{ or } \frac{7}{20}$ $(c) Var(X) = 5-0.8^2,$ $(d) [5-3E(X) = 5-3×0.8]$ $(e) 3^2Var(X) = 9×4.36, \text{ or } [E(Y^2)-(E(Y))^2]=46-2.6^2 = 39.24 \text{ awrt } 39.2$ $(f) Y \ge 0 \Rightarrow 5-3X \ge 0 \Rightarrow 5 \ge 3X$ $[P(Y \ge 0) = P(X \le 0) = P(X = -2) + P(X = 0) \text{ or } a+b$ $(f) Var(X) = 9×4.36, \text{ or } [E(Y^2)-(E(Y))^2]=46-2.6^2 = 39.24 \text{ awrt } 39.2$ $(f) Y \ge 0 \Rightarrow 5-3X \ge 0 \Rightarrow 5 \ge 3X$ $[P(Y \ge 0) = P(X \le 0) = P(X = -2) + P(X = 0) \text{ or } a+b$ $(f) Var(X) = 9×4.36, \text{ or } [E(Y^2)-(E(Y))^2]=46-2.6^2 = 39.24 \text{ awrt } 39.2$ $[F(Y \ge 0) = P(X \le 0) = P(X = -2) + P(X = 0) \text{ or } a+b$ $= 0.575 \text{ or } \frac{23}{40} \text{ Alft}$ $[F(Y \ge 0) = P(X \le 0) = P(X = -2) + P(X = 0) \text{ or } a+b$ $= 0.575 \text{ or } \frac{23}{40} \text{ Alft}$ $(f) Var(X) = 0.8 \text{ with at least 2 non-zero terms correct, fit their } c$ $= 0.575 \text{ or } 2.3 \text{ Alft}$ $(f) Var(X) = 0.8 \text{ with at least 2 non-zero terms correct, fit their } c$ $= 0.575 \text{ or } 2.3 \text{ Alft}$ $(f) Var(X) = 0.8 \text{ with at least 2 non-zero terms correct, fit their } c$ $= 0.575 \text{ or } 2.3 \text{ Alft}$ $(f) Var(X) = 0.8 \text{ with at least 2 non-zero terms correct, fit their } c$ $= 0.575 \text{ or } 2.3 \text{ Alft}$ $(f) Var(X) = 0.8 \text{ with at least 2 non-zero terms correct, fit their } c$ $= 0.575 \text{ or } 2.3 \text{ Alft}$ $(f) Var(X) = 0.8 \text{ with at least 2 non-zero terms correct, fit their } c$ $= 0.575 \text{ or } 2.3 \text{ Alft}$ $(f) Var(X) = 0.8 \text{ or } 2.3 or $	(D)		
$2a+b+c=1 \text{ so } b=1-"0.2"-2×"0.225"$ $b=0.35 \text{ or } \frac{7}{20}$ (c) $Var(X) = 5-0.8^2$, $= \frac{4.36}{4.36}$ MIA1 (2) (d) $[5-3E(X) = 5-3\times0.8\]$ (e) $3^2Var(X) = 9\times4.36$, or $[E(Y^2)-(E(Y))^2]=46-2.6^2=\frac{39.24}{4.36}$ awrt $\frac{39.2}{4.36}$ MI, AI (f) $Y\ge0\Rightarrow 5-3X\ge0\Rightarrow 5\ge3X$ MI $[P(Y\ge0) = P(X\le0) =] P(X=-2) + P(X=0) \text{ or } a+b$ $= \frac{0.575}{40} \text{ or } \frac{23}{40}$ AIft (4) Notes (a) MI for forming an equation using $E(X) = 0.8$ with at least 2 non-zero products correct (b) 1^{81} MI for forming an equation using $E(X) = 0.8$ with at least 2 non-zero terms correct, ft their c 1^{81} AI for 0.25 or any equivalent fraction 2^{n0} MI for forming an equation for b using the sum of their prob`=1, (award M1 if their $(2a+b+c)=1$) 2^{nd} A1ft for 0.35 or a value of b such that their $2a+b+c=1$ (where a,b and c are all probabilities) (c) M1 for a correct expression $5-0.8^2$ (Division by 4 at any stage is M0) (e) M1 for $9\times Var(X)$ ft their $Var(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ (f) 1^{81} M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1^{81} A1 for $2^{11} \text{ A2} \text{ A2}$ for $2^{11} \text{ A3} \text{ A3}$ for $2^{11} \text{ A3} \text{ A4}$ for $2^{11} \text{ A4} \text{ A4}$ for $2^{11} \text{ A4} \text{ A4}$ for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) 2^{11} A4		$8a + 3.2 = 5$ so $\underline{a} = 0.225$ or $\frac{9}{40}$	Al
(c) $Var(X) = 5 - 0.8^2$, $= 4.36$ M1A1 (d) $[5 - 3E(X) = 5 - 3 \times 0.8]$ $= 2.6$ B1 (e) $3^2 Var(X) = 9 \times 4.36$, or $[E(Y^2) - (E(Y))^2] = 46 - 2.6^2 = 39.24$ awrt 39.2 M1, A1 (f) $Y \ge 0 \Rightarrow 5 - 3X \ge 0 \Rightarrow 5 \ge 3X$ M1 $[P(Y \ge 0) = P(X \le 0) =] P(X = -2) + P(X = 0) \text{ or } a + b$ M1 $= 0.575 \text{ or } \frac{23}{40}$ A1ft (4) Notes (a) M1 for forming an equation using $E(X) = 0.8$ with at least 2 non-zero products correct (b) 1^{34} M1 for forming an equation using $E(X) = 0.8$ with at least 2 non-zero terms correct, ft their c 1^{34} A1 for 0.225 or any equivalent fraction 2^{34} M1 for forming an equation for b using the sum of their prob = 1, (award M1 if their($2a + b + c$) = 1) 2^{34} A1ft for 0.35 or a value of b such that their $2a + b + c = 1$ (where a, b and c are all probabilities) (c) M1 for a correct expression $5 - 0.8^2$ (Division by 4 at any stage is M0) (e) M1 for $9 \times Var(X)$ ft their $Var(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ (f) 1^{34} M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1^{34} A1ft for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) 1^{34} A1ft for 1^{34} A1ft for 1^{34} A1ft for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) 1^{34} A1ft for 1^{34} A		 -	M1
(c) $Var(X) = 5 - 0.8^2$, $= 4.36$ M1A1 (2) (d) $[5 - 3E(X) = 5 - 3 \times 0.8]$ $= 2.6$ B1 (e) $3^2 Var(X) = 9 \times 4.36$, or $[E(Y^2) - (E(Y))^2] = 46 - 2.6^2 = 39.24$ awrt 39.2 M1, A1 (f) $Y \ge 0 \Rightarrow 5 - 3X \ge 0 \Rightarrow 5 \ge 3X$ M1 $X \le 1\frac{2}{3}$ M1 $[P(Y \ge 0) = P(X \le 0) =] P(X = -2) + P(X = 0) \text{ or } a + b$ M1 $= 0.575 \text{ or } \frac{23}{40}$ Afit (a) M1 for forming an equation using $E(X) = 0.8$ with at least 2 non-zero products correct (b) 1^{34} M1 for forming an equation using $E(X^2) = 5$ with at least 2 non-zero terms correct, ft their c 1^{34} A1 for 0.225 or any equivalent fraction 2^{nd} M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their($2a + b + c = 1$) 2^{nd} A1ft for 0.35 or a value of b such that their $2a + b + c = 1$ (where a, b and c are all probabilities) (c) M1 for a correct expression $5 - 0.8^2$ (Division by 4 at any stage is M0) (e) M1 for $9 \times Var(X)$ ft their $Var(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ (f) 1^{34} M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1^{34} A1ft for their $(a + b)$ or 0.575 (where a, b and $a + b$ are all probabilities)		$b = 0.35 \text{ or } \frac{7}{100}$	A1ft
(c) $Var(X) = 5 - 0.8^2$, $= 4.36$ M1A1 (2) (d) $[5 - 3E(X) = 5 - 3 \times 0.8]$ $= 2.6$ B1 (e) $3^2Var(X) = 9 \times 4.36$, or $[E(Y^2) - (E(Y))^2] = 46 - 2.6^2 = 39.24$ awrt 39.2 M1, A1 (2) (f) $Y \ge 0 \Rightarrow 5 - 3X \ge 0 \Rightarrow 5 \ge 3X$ M1 $X \le 1\frac{2}{3}$ A1 $[P(Y \ge 0) = P(X \le 0) =]$ $P(X = -2) + P(X = 0)$ or $a + b$ M1 $= 0.575$ or $\frac{23}{40}$ A1ft (4. [15] Notes (a) M1 for forming an equation using $E(X) = 0.8$ with at least 2 non-zero products correct (b) 1^{st} M1 for forming an equation using $E(X) = 0.8$ with at least 2 non-zero terms correct, ft their c 1^{st} A1 for 0.225 or any equivalent fraction 2^{nd} A1ft for 0.35 or a value of b such that their $2a + b + c = 1$ (where a, b and c are all probabilities) (c) M1 for a correct expression $5 - 0.8^2$ (Division by 4 at any stage is M0) (e) M1 for $9 \times Var(X)$ ft their $Var(X)$. Condone -3^2 if $+ 9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ for 3^{tt} A1ft for 3^{tt} 3^{tt} A1ft for 3^{tt} 3^{tt} A2 or 3^{tt} 3^{tt} A1ft for 3^{tt} 3^{tt} A1ft for 3^{tt} 3^{tt} A1ft for 3^{tt} 3^{tt} A1ft for 3^{tt} A1ft for 3^{tt} A1ft for 3^{tt} 3^{tt} A1ft for 3^{tt} 3^{tt} A1ft for 3^{tt} 3^{tt} A1ft for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) for 3^{tt} A1ft f			(4)
(d) $[5-3E(X)=5-3\times0.8]$ $= 2.6$ $= 2.$	(c)	$Var(X) = 5 - 0.8^2$	
(e) $3^2 \operatorname{Var}(X) = 9 \times 4.36$, or $[\operatorname{E}(Y^2) - (\operatorname{E}(Y))^2] = 46 - 2.6^2 = 39.24$ awrt 39.2 M1, A1 (f) $Y \ge 0 \Rightarrow 5 - 3X \ge 0 \Rightarrow 5 \ge 3X$ M1 $[\operatorname{P}(Y \ge 0) = \operatorname{P}(X \le 0) =]$ $\operatorname{P}(X = -2) + \operatorname{P}(X = 0)$ or $a + b$ M1 $= 0.575$ or $\frac{23}{40}$ A1ft Notes (a) M1 for forming an equation using $\operatorname{E}(X) = 0.8$ with at least 2 non-zero products correct (b) 1^{st} M1 for forming an equation using $\operatorname{E}(X) = 0.8$ with at least 2 non-zero products correct (b) 1^{st} M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their $(2a+b+c)=1)$ 2^{nd} M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their $(2a+b+c)=1)$ 2^{nd} A1ft for 0.35 or a value of b such that their $2a+b+c=1$ (where a,b and c are all probabilities) (c) M1 for a correct expression $5-0.8^2$ (Division by 4 at any stage is M0) (e) M1 for $9 \times \operatorname{Var}(X)$ ft their $\operatorname{Var}(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ (f) 1^{st} M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1^{st} A1 for 2^{st} or 2	(-)	<u></u>	(2)
(e) $3^2 \operatorname{Var}(X) = 9 \times 4.36$, or $[\operatorname{E}(Y^2) - (\operatorname{E}(Y))^2] = 46 - 2.6^2 = 39.24$ awrt 39.2 M1, A1 (f) $Y \ge 0 \Rightarrow 5 - 3X \ge 0 \Rightarrow 5 \ge 3X$ M1 $[\operatorname{P}(Y \ge 0) = \operatorname{P}(X \le 0) =]$ $\operatorname{P}(X = -2) + \operatorname{P}(X = 0)$ or $a + b$ M1 $= 0.575$ or $\frac{23}{40}$ A1ft Notes (a) M1 for forming an equation using $\operatorname{E}(X) = 0.8$ with at least 2 non-zero products correct (b) 1^{st} M1 for forming an equation using $\operatorname{E}(X) = 0.8$ with at least 2 non-zero products correct (b) 1^{st} M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their $(2a+b+c)=1)$ 2^{nd} M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their $(2a+b+c)=1)$ 2^{nd} A1ft for 0.35 or a value of b such that their $2a+b+c=1$ (where a,b and c are all probabilities) (c) M1 for a correct expression $5-0.8^2$ (Division by 4 at any stage is M0) (e) M1 for $9 \times \operatorname{Var}(X)$ ft their $\operatorname{Var}(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ (f) 1^{st} M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1^{st} A1 for 2^{st} or 2	(4)	[5 2E(V) = 5 2 \(\text{0.81} \)	D1
(e) $3^2 \text{Var}(X) = 9 \times 4.36$, or $[E(Y^2) - (E(Y))^2] = 46 - 2.6^2 = 39.24$ awrt 39.2 M1, A1 (2) (f) $Y \ge 0 \Rightarrow 5 - 3X \ge 0 \Rightarrow 5 \ge 3X$ M1 $X \le 1\frac{2}{3}$ A1 $[P(Y \ge 0) = P(X \le 0) =]$ $P(X = -2) + P(X = 0)$ or $a + b$ M1 $A1$ A1ft (4) $A1$ A1ft (5) $A1$ A1 for forming an equation using $E(X) = 0.8$ with at least 2 non-zero products correct (b) $A1$ A1 for 0.225 or any equivalent fraction $A1$ A1 for 0.225 or any equivalent fraction $A1$ A1ft for 0.35 or a value of $A1$ such that their $A1$ A1 for 0.35 or a value of $A1$ such that their $A1$ A1 for $A1$ A1ft	(a)	$[3-3E(X)=3-3\times0.8] = \underline{2.0}$	(1)
(f) $Y \ge 0 \Rightarrow 5-3X \ge 0 \Rightarrow 5 \ge 3X$ $X \le 1\frac{2}{3}$ $X \ge 1\frac{2}{3}$ $X $	(e)	$3^2 \operatorname{Var}(X) = 9 \times 4.36$, or $[E(Y^2) - (E(Y))^2] = 46 - 2.6^2 = 39.24$ awrt 39.2	
$ (a) P(Y \ge 0) = P(X \le 0) =] P(X = -2) + P(X = 0) \text{or} a + b $ $ = 0.575 \text{ or } \frac{23}{40} $ A1ft $ \text{M1} $ A1ft $ \text{M1} $ A1ft $ \text{M2} $ A1ft $ \text{M3} $ A1ft $ \text{M1} $ A1ft $ \text{M2} $ A1ft $ \text{M3} $ A1ft $ \text{M3} $ A1ft $ \text{M4} $ A1ft $ \text{M5} $ A1ft $ \text{M1} $ For forming an equation using $ E(X) = 0.8 $ with at least 2 non-zero products correct $ \text{M1} $ For forming an equation using $ E(X^2) = 5 $ with at least 2 non-zero terms correct, ft their $ c $ 1st A1 for 0.225 or any equivalent fraction 2nd M1 for forming an equation for $ b $ using the sum of their prob'=1, (award M1 if their($ 2a+b+c)=1 $) $ 2^{nd} $ A1ft for 0.35 or a value of $ b $ such that their $ 2a+b+c = 1 $ (where $ a $, $ b $ and $ c $ are all probabilities) $ \text{C0} $ M1 for a correct expression $ 5-0.8^2 $ (Division by 4 at any stage is M0) $ \text{C0} $ M1 for $ 9 \times \text{Var}(X) $ ft their $ \text{Var}(X) $. Condone $ -3^2 $ if $ +9 $ is used later $ \text{Correct answer with no incorrect working seen in (f) scores 4/4 } $ (f) $ \text{M1} $ for attempting to solve the inequality in $ X $ as far as $ p \ge q $ with one of $ p $ or $ q $ correct $ \text{M1} $ for attempting to solve the inequality in $ X $ as far as $ p \ge q $ with one of $ p $ or $ q $ correct $ \text{M1} $ for $ \text{P}(X = 0) + \text{P}(X = -2) $ Allow letters " $ a + b $ " here or ft their values. $ 2^{nd} $ Alft for their $ (a + b) $ or 0.575 (where $ a $, $ b $ and $ a + b $ are all probabilities) $ \text{M2} $ Alt- $ \text{M3} $ for attempting to convert $ X $ into $ Y $ (at least 1 y-value correct) (maybe seen earlier) $ \text{M6} $ Alt- $ \text{M6} $ for attempting to convert $ X $ into $ Y $ (at least 1 y-value correct) (maybe seen earlier) $ \text{M6} $ Alt- $ \text{M6} $ for $ 11, 5, -1 $ and $ -7 $ all correct	(4)	W. 0. 5 0W. 0. 5. 0W	(2)
[P($Y \ge 0$) = P($X \le 0$) =] P($X = -2$) + P($X = 0$) or $A = b$ Notes (a) Notes (b) 1st M1 for forming an equation using $E(X) = 0.8$ with at least 2 non-zero products correct (b) 1st M1 for forming an equation using $E(X^2) = 5$ with at least 2 non-zero terms correct, ft their C 1st A1 for 0.225 or any equivalent fraction 2^{nd} M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their($2a+b+c$)=1) 2^{nd} A1ft for 0.35 or a value of b such that their $2a+b+c=1$ (where a , b and c are all probabilities) (c) M1 for a correct expression $5-0.8^2$ (Division by 4 at any stage is M0) (e) M1 for 9×Var(X) ft their Var(X). Condone -3^2 if +9 is used later Correct answer with no incorrect working seen in (f) scores $4/4$ (f) 1st M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1st A1 for $X \le 1\frac{2}{3}$ or $X \le 0$ or $X \le a$ wrt 1.7 2^{nd} M1 for P($X = 0$) + P($X = -2$) Allow letters " $X = 0$ " here or ft their values. $X = 0$ and $X = 0$ for their ($X = 0$) or 0.575 (where $X = 0$) where $X = 0$ and $X = 0$ are all probabilities) Alt- Method 1st A1 for attempting to convert $X = 0$ into Y (at least 1 y-value correct) (maybe seen earlier)	(f)		
Solution		3	
(4) [15] Notes (a) M1 for forming an equation using $E(X) = 0.8$ with at least 2 non-zero products correct (b) 1^{st} M1 for forming an equation using $E(X^2) = 5$ with at least 2 non-zero terms correct, ft their c 1^{st} A1 for 0.225 or any equivalent fraction 2^{nd} M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their($2a+b+c$)=1) 2^{nd} A1ft for 0.35 or a value of b such that their $2a+b+c=1$ (where a , b and c are all probabilities) (c) M1 for a correct expression $5-0.8^2$ (Division by 4 at any stage is M0) (e) M1 for $9 \times Var(X)$ ft their $Var(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ (f) 1^{st} M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1^{st} A1 for $X \le 1\frac{2}{3}$ or $X \le 0$ or $X \le a$ wrt 1.7 2^{nd} M1 for $P(X = 0) + P(X = -2)$ Allow letters " $a + b$ " here or ft their values. 2^{nd} A1ft for attempting to convert X into Y (at least 1 y -value correct) (maybe seen earlier) Method 1^{st} A1 for $11, 5, -1$ and -7 all correct			
 Notes (a) M1 for forming an equation using E(X) = 0.8 with at least 2 non-zero products correct (b) 1st M1 for forming an equation using E(X²) = 5 with at least 2 non-zero terms correct, ft their c 1st A1 for 0.225 or any equivalent fraction 2nd M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their(2a+b+c)=1) 2nd A1ft for 0.35 or a value of b such that their 2a+b+c = 1 (where a, b and c are all probabilities) (c) M1 for a correct expression 5-0.8² (Division by 4 at any stage is M0) (e) M1 for 9×Var(X) ft their Var(X). Condone -3² if +9 is used later Correct answer with no incorrect working seen in (f) scores 4/4 (f) 1st M1 for attempting to solve the inequality in X as far as p ≥ qX with one of p or q correct 1st A1 for X ≤ 1½/3 or X ≤ 0 or X ≤ awrt 1.7 2nd M1 for P(X = 0) + P(X = -2) Allow letters "a + b" here or ft their values. 2nd A1ft for their (a + b) or 0.575 (where a, b and a+b are all probabilities) Alt- 1st M1 for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) Method 1st A1 for 11, 5, -1 and -7 all correct 		$-\frac{65572}{40}$ or $\frac{40}{40}$	
(a) M1 for forming an equation using $E(X) = 0.8$ with at least 2 non-zero products correct (b) 1^{st} M1 for forming an equation using $E(X^2) = 5$ with at least 2 non-zero terms correct, ft their c 1^{st} A1 for 0.225 or any equivalent fraction 2^{nd} M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their($2a+b+c=1$) 2^{nd} A1ft for 0.35 or a value of b such that their $2a+b+c=1$ (where a , b and c are all probabilities) (c) M1 for a correct expression $5-0.8^2$ (Division by 4 at any stage is M0) (e) M1 for $9 \times \text{Var}(X)$ ft their $\text{Var}(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ (f) 1^{st} M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1^{st} A1 for $X \le 1\frac{2}{3}$ or $X \le 0$ or $X \le \text{awrt } 1.7$ 2^{nd} M1 for $P(X = 0) + P(X = -2)$ Allow letters " $a + b$ " here or ft their values. 2^{nd} A1ft for their $(a + b)$ or 0.575 (where a , b and $a + b$ are all probabilities) Alt- Method 1^{st} M1 for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) Method 1^{st} A1 for 1^{st} , 0 and 0 and 0 all correct			(4)
 (b) 1st M1 for forming an equation using E(X²) = 5 with at least 2 non-zero terms correct, ft their c 1st A1 for 0.225 or any equivalent fraction 2nd M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their(2a+b+c)=1) 2nd A1ft for 0.35 or a value of b such that their 2a+b+c = 1 (where a, b and c are all probabilities) (c) M1 for a correct expression 5-0.8² (Division by 4 at any stage is M0) (e) M1 for 9×Var(X) ft their Var(X). Condone -3² if +9 is used later Correct answer with no incorrect working seen in (f) scores 4/4 (f) 1st M1 for attempting to solve the inequality in X as far as p ≥ qX with one of p or q correct 1st A1 for X ≤ 1²/3 or X ≤ 0 or X ≤ awrt 1.7 2nd M1 for P(X = 0) + P(X = -2) Allow letters "a + b" here or ft their values. 2nd A1ft for their (a + b) or 0.575 (where a, b and a+b are all probabilities) Alt-Method M1 for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) Method 		Notes	[13]
1st A1 for 0.225 or any equivalent fraction 2nd M1 for forming an equation for <i>b</i> using the sum of their prob'=1, (award M1 if their(2 <i>a</i> + <i>b</i> + <i>c</i>)=1) 2nd A1ft for 0.35 or a value of <i>b</i> such that their 2 <i>a</i> + <i>b</i> + <i>c</i> = 1 (where <i>a</i> , <i>b</i> and <i>c</i> are all probabilities) (c) M1 for a correct expression 5−0.8² (Division by 4 at any stage is M0) (e) M1 for 9×Var(X) ft their Var(X). Condone −3² if +9 is used later Correct answer with no incorrect working seen in (f) scores 4/4 (f) 1st M1 for attempting to solve the inequality in <i>X</i> as far as <i>p</i> ≥ <i>qX</i> with one of <i>p</i> or <i>q</i> correct 1st A1 for X ≤ 1 ² / ₃ or X ≤ 0 or X ≤ awrt 1.7 2nd M1 for P(X = 0) + P(X = −2) Allow letters " <i>a</i> + <i>b</i> " here or ft their values. 2nd A1ft for their (<i>a</i> + <i>b</i>) or 0.575 (where <i>a</i> , <i>b</i> and <i>a</i> + <i>b</i> are all probabilities) Alt- Method 1st A1 for attempting to convert <i>X</i> into <i>Y</i> (at least 1 y-value correct) (maybe seen earlier) Method 1st A1 for 11, 5, −1 and −7 all correct	(a)	M1 for forming an equation using $E(X) = 0.8$ with at least 2 non-zero products corr	ect
1st A1 for 0.225 or any equivalent fraction 2nd M1 for forming an equation for <i>b</i> using the sum of their prob'=1, (award M1 if their(2 <i>a</i> + <i>b</i> + <i>c</i>)=1) 2nd A1ft for 0.35 or a value of <i>b</i> such that their 2 <i>a</i> + <i>b</i> + <i>c</i> = 1 (where <i>a</i> , <i>b</i> and <i>c</i> are all probabilities) (c) M1 for a correct expression 5−0.8² (Division by 4 at any stage is M0) (e) M1 for 9×Var(X) ft their Var(X). Condone −3² if +9 is used later Correct answer with no incorrect working seen in (f) scores 4/4 (f) 1st M1 for attempting to solve the inequality in <i>X</i> as far as <i>p</i> ≥ <i>qX</i> with one of <i>p</i> or <i>q</i> correct 1st A1 for X ≤ 1 ² / ₃ or X ≤ 0 or X ≤ awrt 1.7 2nd M1 for P(X = 0) + P(X = −2) Allow letters " <i>a</i> + <i>b</i> " here or ft their values. 2nd A1ft for their (<i>a</i> + <i>b</i>) or 0.575 (where <i>a</i> , <i>b</i> and <i>a</i> + <i>b</i> are all probabilities) Alt- Method 1st A1 for attempting to convert <i>X</i> into <i>Y</i> (at least 1 y-value correct) (maybe seen earlier) Method 1st A1 for 11, 5, −1 and −7 all correct	(b)	1st M1 for forming an equation using $E(X^2) = 5$ with at least 2 non-zero terms correct. If their c	
 (c) M1 for a correct expression 5-0.8² (Division by 4 at any stage is M0) (e) M1 for 9×Var(X) ft their Var(X). Condone -3² if +9 is used later Correct answer with no incorrect working seen in (f) scores 4/4 (f) 1st M1 for attempting to solve the inequality in X as far as p ≥ qX with one of p or q correct 1st A1 for X ≤ 1²/3 or X ≤ 0 or X ≤ awrt 1.7 2nd M1 for P(X = 0) + P(X = -2) Allow letters "a + b" here or ft their values. 2nd A1ft for their (a + b) or 0.575 (where a, b and a+b are all probabilities) Alt-1st M1 for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) Method 1st A1 for 11, 5, -1 and -7 all correct 	(~)	1 st A1 for 0.225 or any equivalent fraction	
(c) M1 for a correct expression $5-0.8^2$ (Division by 4 at any stage is M0) (e) M1 for $9 \times \text{Var}(X)$ ft their $\text{Var}(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ (f) 1^{st} M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1^{st} A1 for $X \le 1\frac{2}{3}$ or $X \le 0$ or $X \le 1$ awrt 1.7 2^{nd} M1 for 2^{nd} For 2^{nd} A1ft for their 2^{nd} A1ft for their 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd} A1ft for attempting to convert 2^{nd} A1ft for 2^{nd		2^{nd} M1 for forming an equation for b using the sum of their prob'=1, (award M1 if their 2^{nd} A1ft for 0.25 are a value of b such that their 2^{nd} by $a = 1$ (where a b and a greather	r(2a+b+c)=1
(e) M1 for $9 \times \text{Var}(X)$ ft their $\text{Var}(X)$. Condone -3^2 if $+9$ is used later Correct answer with no incorrect working seen in (f) scores $4/4$ (f) 1^{st} M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1^{st} A1 for $X \le 1\frac{2}{3}$ or $X \le 0$ or $X \le 1$ awrt 1.7 2^{nd} M1 for $P(X = 0) + P(X = -2)$ Allow letters " $a + b$ " here or ft their values. 2^{nd} A1ft for their $(a + b)$ or 0.575 (where a, b and $a + b$ are all probabilities) Alt- Method 1^{st} M1 for attempting to convert X into Y (at least 1 y -value correct) (maybe seen earlier) for $11, 5, -1$ and -7 all correct		2 ATH for 0.33 of a value of b such that their $2a+b+c=1$ (where a, b and c are an)	probabilities)
Correct answer with no incorrect working seen in (f) scores 4/4 (f) 1^{st} M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1^{st} A1 for $X \le 1\frac{2}{3}$ or $X \le 0$ or $X \le a$ wrt 1.7 2^{nd} M1 for $P(X = 0) + P(X = -2)$ Allow letters " $a + b$ " here or ft their values. 2^{nd} A1ft for their $(a + b)$ or 0.575 (where a, b and $a + b$ are all probabilities) Alt- Method 1^{st} M1 for attempting to convert X into Y (at least 1 y -value correct) (maybe seen earlier) Method 1^{st} A1 for $11, 5, -1$ and $11, 5, -1$ an	(c)	M1 for a correct expression $5-0.8^2$ (Division by 4 at any stage is M0)	
Correct answer with no incorrect working seen in (f) scores 4/4 (f) 1^{st} M1 for attempting to solve the inequality in X as far as $p \ge qX$ with one of p or q correct 1^{st} A1 for $X \le 1\frac{2}{3}$ or $X \le 0$ or $X \le a$ wrt 1.7 2^{nd} M1 for $P(X = 0) + P(X = -2)$ Allow letters " $a + b$ " here or ft their values. 2^{nd} A1ft for their $(a + b)$ or 0.575 (where a, b and $a + b$ are all probabilities) Alt- Method 1^{st} M1 for attempting to convert X into Y (at least 1 y -value correct) (maybe seen earlier) Method 1^{st} A1 for $11, 5, -1$ and $11, 5, -1$ an	(e)	M1 for $9 \times Var(Y)$ ft their $Var(Y)$ Condone 3^2 if ± 9 is used later	
1st A1 for $X \le 1\frac{2}{3}$ or $X \le 0$ or $X \le awrt 1.7$ 2nd M1 for $P(X = 0) + P(X = -2)$ Allow letters " $a + b$ " here or ft their values. 2nd A1ft for their $(a + b)$ or 0.575 (where a, b and $a + b$ are all probabilities) Alt- 1st M1 for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) Method 1st A1 for 11, 5, -1 and -7 all correct	(C)		
2^{nd} M1 for $P(X = 0) + P(X = -2)$ Allow letters " $a + b$ " here or ft their values. $2^{\text{nd}} \text{ A1ft}$ for their $(a + b)$ or 0.575 (where a, b and $a + b$ are all probabilities) Alt- Method 1^{st} M1 for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) for 11, 5, -1 and -7 all correct	(f)		or q correct
2^{nd} A1ft for their $(a + b)$ or 0.575 (where a , b and $a+b$ are all probabilities) Alt- Method 1^{st} M1 for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) for 1^{st} A1 for 1^{st} A2 for 1^{st} A1 for 1^{st} A2 for 1^{st} A3 for 1^{st} A2 for 1^{st} A3 for 1^{st} A3 for 1^{st} A3 for $1^{$		·	
Alt- 1^{st} M1 for attempting to convert X into Y (at least 1 y-value correct) (maybe seen earlier) Method 1^{st} A1 for 11 , 5, -1 and -7 all correct			
Method 1 st A1 for 11, 5, -1 and -7 all correct			
$\mid \Delta \mid 1$ 1 1 1 1 1 1 1 1 1	Method	2^{nd} M1 for P(Y=11) + P (Y=5)	
2^{nd} A1ft for their $(a + b)$ or 0.575 (where a , b and $a+b$ are all probabilities)			

Question	Scheme	Marks
6. (a)	$P(S) = 0.31 + p$, $P(D) = 0.35$, $P(S \cap D) = 0.14$	M1
	(0.31 + p)(0.35) = 0.14 oe	M1
	P(S) = 0.4 or 0.31 + p = 0.4 or 0.35p = 0.0315	A1
	p = 0.09	A1
(b)	$P(S + M + P) = 1$ so $a = 1$ $(0.17 + 0.10 + 0.15 + 0.06 + 0.04)$ $p_1 = 0.48$ p_2	(4)
(b)	$P(S \cup M \cup D) = 1$ so $q = 1 - (0.17 + 0.10 + 0.15 + 0.06 + 0.04) - p$ or $0.48 - p$	M1
	$q = \underline{0.39}$	Alft
		(2)
(c)(i)	$P(D \cap S \cap M) = 0.10$	
	$[P(D \mid S \cap M)] = \frac{P(D \cap S \cap M)}{P(S \cap M)} = \frac{0.10}{0.27}$	M1
	` ´	
	$= \frac{10}{27} \text{ or awrt } \underline{0.370}$	A1
(ii)		
(ii)	$[P(D \mid S' \cap M]] = \frac{P(D \cap S' \cap M)}{P(S' \cap M)} = \frac{0.15}{0.54}$	M1
	$=\frac{5}{18} \text{ or awrt } \underline{\textbf{0.278}}$	A1
	10	(4)
(d)	27 order $S \cap M$ so expect $27 \times \frac{10}{27}D$ or 36 order $S' \cap M$ so expect $36 \times \frac{5}{18}$ D	M1
(4)	So expect $20 \frac{\text{Gesserts}}{\text{So}}$	Alcao
	30 expect <u>20 (desserts)</u>	(2)
		[12]
	Notes	
(a)	1 st M1 for attempting P(S), P(D) and P(S \cap D) with at least 2 correct.	
	These may be seen in a conditional probability.	
	NB $P(S \mid D) = \frac{0.14}{0.35}$ and $P(D \mid S) = \frac{0.14}{0.31 + p}$	
	0.55	
	2 nd M1 using the independence condit' and their values to form a suitable equation f	
	1^{st} A1 for $P(S) = 0.4 \text{ or } 0.31 + p = 0.4 \text{ or } 0.35p = 0.0315$ (i.e. one move from $p = 0.0315$))
(b)	M1 for using sum of probabilities = 1 and ft their p	
(6)	A1ft for $0.48 -$ "their p " (provided $0 <$ their $p < 0.48$)	
	(Free cases of cases	
(c)	1 st M1 for a correct ratio of probabilities or a correct ratio expression with at least or	ne correct
	probability substituted. (M0 if numerator is $P(D) \times P(S \cap M)$ or numerator>o	lenominator)
	$1^{\text{st}} \text{ A}1 \text{for } \frac{10}{27} \text{ or awrt } 0.370$	
	2 nd M1 for a correct ratio of probabilities <u>or</u> a correct ratio expression with at least or	
	probability substituted. (M0 if numerator is $P(D) \times P(S' \cap M)$ or numerator>	denominator)
	$2^{\text{nd}} \text{ A1 for } \frac{5}{18} \text{ or awrt } 0.278$	
	18	
(d)	M1 for at least one correct calculation ft their probabilities from (c).	
(4)	i.e. either 27×their (c)(i) or 36×their (c)(ii)	

Question	Scheme	Marks
7. (a)	$[P(D > 50) =] P(Z > \frac{50 - 32}{12})$	M1
	=1-P(Z<1.5) or $1-0.9332$	M1
	= awrt <u>0.0668</u> or 6.68%	A1cso
(b)	P(D > d) = 0.191 + 0.0668 = 0.2578 or $P(D < d) = 0.7422$	B1 (3)
	$\frac{d-32}{12} = 0.65 \qquad \text{(calc gives } 0.65014 \text{ or } 0.65012)$	M1A1
	d = 39.8	A1 (4)
(c)	0.0668×0.191^2 [= 0.0024369]	M1
	[]×3	M1
	$[\cdots]^{5}$ = 0.00731079 = awrt 0.0073	A1
	= 0.00731079 = awit <u>0.0073</u>	(3)
		[10]
	Notes	
(a)	1^{st} M1 for standardising with 50, 32 and 12. Allow \pm 2^{nd} M1 for $1 - P(Z < 1.5)$ seen i.e. a correct method for finding $P(Z > 1.5)$ e.g. $1 - t$ Alcso for awrt 0.0668 with both Ms scored and no incorrect working seen.	tables value
	Condone incomplete notation and condone use of different letters for <i>Z</i> .	
(b)	B1 for awrt 0.2578 (calc = 0.257807) or awrt 0.7422 (calc = 0.742192) may be implied by $z = \text{awrt } 0.65$	
	M1 for standardising with 32 and 12, i.e. $\pm \frac{d-32}{12}$ (equating to a probability is M	(0)
	1^{st} A1 for z = awrt 0.65 and a correct equation in d (with compatible signs) 2^{nd} A1 for awrt 39.8	
(c)	1 st M1 for 0.0668×0.191^2 or sight of awrt 0.0024 (may be seen embedded in part an expression, e.g. ' $n \times 0.0668 \times 0.191^2$ ') (condone $6.68\% \times 19.1\% \times 19.1\%$ if the final answer given is < 1)	of
	2^{nd} M1 for any expression of the form $3pq^2$ where p and q are both probabilities	
	A1 for awrt 0.0073 allow awrt 0.73% but 0.73 is A0	