

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code IA040144 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1. (a)	<i>n</i> - large (allow $n > 50$ or any number greater than 50) ["too" large is OK] p - small (allow $p < 0.2$ or a probability less than 0.2)	B1
(b)	$H_0: p = 0.009$ $H_1: p > 0.009$	(1) B1 (1)
(c)	ProbabilityCritical Region (CR) $P(X \ge 9) = 1 - P(X \le 8)$ $P(X \le 7) = 0.9134$	B1 M1
	$= 1 - 0.9597 P(X \le 8) = 0.9597 = 0.0403 CR X \ge 9$	A1
	Reject H_0 or Significantor9 is in the Critical region.There is evidence that the farmer's claim is true.Or There is evidence that the proportion of eggs with a double yolk is > 0.009	M1d A1cso (5)
		[7]
	Notes	
(D)	B1 both hypotheses correct. Must mention p (or π). Words only is B0	
(c)	B1 writing or using Po(4.5)(Check their probs using tables if Po(4.5) is not seen) 1 st M1 writing 1– P($X \le 8$) May be implied by sight of 1 – 0.9597 <u>or</u> for CR method: P($X \le 7$) = 0.9134 or P($X \le 8$) = 0.9597 (NB may see P($X \le 9$) = 0.9829 Allow this if trying a two-tail test and CR approach) They can score M1 for writing 1– P($X \le 8$) even if they later go on to use another distribution such as B(500, 0.009). Exact binomial gives 0.039526 but scores A0 1 st A1 for probability awrt 0.0403 or CR of $X > 8$ or $X \ge 9$ Allow awrt 0.9597 if accompanied by a correct comparison with 0.95 2 nd dM1 correct statement that must agree with hypotheses. Dependent on B1 Contradictory non-contextual ststements such as "not significant" so "reject H ₀ " score M0 2 nd A1cso correct contextual statement. Depends on all other marks in (c) being scored. Must mention "farmer" and "claim" <u>or</u> "eggs" and "double yolk"	
	NB A correct calculation followed only by a correct contextual comment scores the final M1(implied) and A1	
2-tail	$\frac{\text{If }2\text{-tail hypotheses in (b)}}{\text{Score B0 in (b)}}$ Score B0 in (b) Could score B1 M1A1 and M1 for a correct non contextual comment but A0 since they should not be rejecting H ₀ in this case (or they have scored A0 earlier so not cso)	

Question Number	Scheme	Marks
2. (a)	$\int_{0}^{2} k \left(4 - y^{2}\right) dy [=1] \qquad \underline{\text{or}} \text{attempt } F(y)$	M1
	$k\left[4y - \frac{y^3}{3}\right]_0^2 \left[=1\right] \qquad \qquad$	A1
	$k\left[4 \times 2 - \frac{2^3}{3}\right] = 1$ <u>or</u> must use $F(2) = 1$	M1d
	$k = \frac{3}{16} \qquad (*)$	A1cso (4)
(b)	$E(Y) = \frac{3}{16} \int_0^2 (4y - y^3) dy$	M1
	$= \frac{3}{16} \left[2y^2 - \frac{y^4}{4} \right]_0^2 , = \frac{12}{16} \text{or} 0.75$	A1, A1
	= 750 (kg) E (Y ²) = $\frac{3}{2} \int_{-\infty}^{2} 4y^2 - y^4 dy$	Alcao (4) M1
(0)	$\frac{16}{16} \int_{0}^{10} y ^{3} y ^{5}$	
	$= \frac{5}{16} \left[\frac{4y}{3} - \frac{y}{5} \right]_{0} \qquad (= 0.8)$	A1
	$Var(Y) = 0.8 - 0.75^2$ = 0.2375	M1 A1
	Standard deviation = 0.48734 or 487 (kg)	A1 (5) B1
(d)	$P(Y>1.5) = \frac{3}{16} \int_{1.5}^{2} (4 - y^2) dy \ \underline{\text{or}} \qquad 1 - \frac{3}{16} \left[4y - \frac{y^3}{3} \right]_{0}$	M1
	$=\frac{3}{4}\left[4v-\frac{y^{3}}{2}\right]^{2}$ or $1-\frac{3}{4}\left[4v-\frac{y^{3}}{2}\right]^{1.5}=0.0859$ or $\frac{11}{2}$	A1
	$16\begin{bmatrix} 19 & 3 \end{bmatrix}_{1.5} \qquad 16\begin{bmatrix} 19 & 3 \end{bmatrix}_{0} \qquad 128$	(3)
	Notes	[10]
(a)	1 st M1 attempting to integrate $f(y)$, (at least one term $y^n \rightarrow y^{n+1}$). Ignore limits. 1 st A1 fully correct integration. Ignore limits and accept any letters. 2 nd dM1 dep on 1 st M1. Subst in correct limits – condone not seeing 0 substituted. 2 nd A1 cso – no incorrect working seen. "Verifying" requires statement "so $k =$ " here NB An "= 1" must appear somewhere before the line $\frac{16k}{-1}$	
(b)	1 st M1 Attempting to integrate $yf(y)$, (at least one term $y^n \rightarrow y^{n+1}$). Ignore limit	ts
	1^{st} A1 correct integration which must be shown. No integration loses all 4 marks 2^{nd} A1 0.75 or any exact equivalent. May be implied by a correct ans. of 750 (kg) 3^{rd} A1cao 750 only. Condone missing "kg"	
(c)	1 st M1 Attempting to integrate $y^2 f(y)$ (at least one term $y^n \to y^{n+1}$). Ignore limits. Co	ondone in $$
	1 A1 correct integration. Condone inside $$. May be implied by sight of 0.8 2^{nd} M1 using $E(Y^2) - [E(Y)]^2$ follow through their $E(Y^2)$ and $E(Y)^2$ Must see values of 0.8 $E(Y)^$	ues <u>used</u>
	2^{nd} A1 0.2375 may be implied by correct sd. Allow $\frac{19}{80}$ or exact equivalent 3^{rd} A1 awrt 0.487 or awrt 487 (no fractions)	
(d)	B1 using 1.5 in an integral or $1 - F(1.5)$. Must be part of a correct expression M1 Correct integration and at least intention to use correct limits so 1.5, 2 or A1 awrt 0.0859 or $\frac{11}{128}$ or exact equivalent	on. r 0, 1.5 seen

Question Number	Scheme	Marks
3. (a)	$\left[E(T) = \frac{\alpha + \beta}{2} = 2 \right], \Rightarrow \alpha + \beta = 4$, B 1
	$\left[\operatorname{Var}(T) = \frac{(\beta - \alpha)^2}{12} = \frac{16}{3}\right], \Longrightarrow (\beta - \alpha)^2 = 64$, B 1
	$\alpha = -2, \beta = 6$	M1 A1 A1
		(5)
(b)	$P(T < 3.4) = \frac{1}{8} \times (5.4)$	M1
	= 0.675	A1
		(2)
		[7]
	Notes	
(a)	$1^{\text{st}} B1 \qquad \alpha + \beta = 4 \text{ oe}$	
	2 nd B1 $(\beta - \alpha)^2 = 64$ or allow $(\beta - \alpha) = +8$ or $(\beta - \alpha) = -8$ or $3(\beta - \alpha)^2$	=192
	May be implied by a correct equation in one variable	
	M1 Correct processes to obtain a correct equation in one variable. Allow	one slip.
	e.g. $(\beta - [4 - \beta])^2 = 64$ or $2\beta = 12$ or $4\alpha^2 - 16\alpha - 48 = 0$ or $(2 - \alpha)^2$	=16
	$1^{\mathrm{st}} \mathrm{A1} \qquad \alpha = -2,$	
	$2^{nd} A1 \qquad \beta = 6$	
	If both correct answers only appear then this implies all 5 marks.	
(b)	M1 $\frac{1}{\pm \text{ their "}(\beta - \alpha)"} \times (3.4 - \text{'their } \alpha \text{'})$ If their nexpression is -ve or > 1 t	hen M0
	A1 0.675 or exact equivalent e.g. $\frac{27}{40}$	

Question Number	Scheme	Marks
4. (a)	$P(L > 100) = P\left(Z > \frac{100 - \mu}{0.5}\right) = 0.3$	
	$\Rightarrow \frac{100 - \mu}{0.5} =, \ 0.5244$	M1 B1
	$\mu = 99.7378$ cm awrt 99.7	A1
(b)	<i>X</i> represents number more than 100cm. $X \sim B(12, 0.3)$	(3) B1
	$P(X \le 2) = 0.2528$ awrt 0.253	M1A1
(c)	Normal approximation $\mu = 400 \times 0.3 = 120$, $\sigma^2 = 84$	(3) M1, A1
	$P(X > 127) \approx 1 - P(Z < \frac{127.5 - 120}{\sqrt{84}})$ ±0.5, standardise	M1, M1, A1
	$\approx 1 - P(Z < 0.818)$	
	=1-0.7939	
	= 0.206 or 0.207	A1 (6)
		[12]
	Notes	
(a)	M1 standardising (\pm) with 100, μ and 0.5 and setting equal to a z value. 0.5	< z < 0.7
	ND Use of $z = 0.7$ scores MODOAU B1 $z = \pm 0.5244$ or better (Calc. Gives 0.5244005) Must be used in an ec	ution for u
	A1 awrt 99 7 Answer only is $0/3$	μ
	NB M1 + answer only of awrt 99.7 scores M1B0A1 but allow B1 for 99.7376 $\leq \mu$	≤ 99.7379
(h)	B1 writing B(12, 0.3)	
(~)	M1 writing $P(X \le 2)$ May be implied by sight of 0.252 or 0.253.	
	NB P(X < 3) alone is M0 unless they show that $P(X < 3) = P(X = 0) + P(X = 1)$	+ P(X=2)
	A1 awrt 0.253. Answer only scores 3/3	
(c)	1 st M1 attempting to use a Normal approx. State N(μ , σ^2) with $\mu \text{ or } \sigma$ correct 1 st A1 correct mean <u>and</u> var/sd 2 nd M1 continuity correction used: either 127.5 or 126.5 seen 3 rd M1 standardising with their μ and σ and finding correct area. Must lead to P(Z > +ve) (o.e.) 2 nd A1 $\frac{127.5-120}{\sqrt{84}}$ or awrt 0.82 3 rd A1 for awrt 0.206 or 0.207	

Question Number	Scheme	Marks
5. (a)(i)	$H_0: p = 0.35$ $H_1: p \neq 0.35$	B1
(ii)	B(15,0.35)	M1
	$CR X \le 1 \cup X \ge 10 \qquad (Allow any letter)$	A1A1
		(4)
(b)	8 is not in CR	M1
	There is evidence that the Company's <u>claim</u> is true	A1ft
		(2)
(c)	0.0142 + 0.0124 = 0.0266	B1
		(1)
		[7]
	Notes	
(a) (i)	B1 both hypotheses correct. Must mention p (or π). Words only is B0	
(ii)	M1 Writing B(15,0.35) May be implied by e.g. $P(X \le 1) = 0.0142$ or $P(X \le 9)$) = 0.9876
	1 st A1 $X \le 1$ (accept $X < 2$) Allow $0 \le X \le 1$ but P($X \le 1$) is A0	
	$2^{nd} A1 X \ge 10 \text{ (accept } X > 9) \text{ Allow } 10 \le X \le 15 \text{ but } P(X \ge 10) \text{ is } A0$	
	Either correct answer will imply M1	
(b)	M1 for a reason that matches their CR. "Interpret" their CR of $P(X \ge 10)$ as Z	$X \ge 10$ etc
	Allow calculation of $P(X \ge 8) = 1 - 0.8868 = 0.1132$ and "not sig" comm	nent
	Do not allow contradictory remarks e.g. 8 is not in CR so significant (thi	s gets M0)
	A1ft for a conclusion correct for their CR in context	
	Must mention "claim" or "peas" and "germinating"	
	NB A correct contextual claim on its own scores M1A1	
(c)	B1 for 0.0266 or awrt 0.0266 (calc gives 0.02662196)	

Question	Scheme	Marks	
Number	F(1.00)	3.64	
6. (a)	$F(1.23) = awrt \ 0.495$ $F(1.24) = awrt \ 0.501$ 0.5 lies between therefore median value lies between 1.23 and 1.24	M1 A1 A1 (3)	
(b)	$ [f(x) =] \begin{cases} \frac{9x}{10} - \frac{3x^2}{10} & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases} $	M1A1 B1 (3)	
(c)	$\frac{18}{20} - \frac{12x}{20} = 0 \text{or} \text{completeing square so:} \frac{3}{10} \left[\frac{9}{4} - \left(x - \frac{3}{2} \right)^2 \right]$	M1	
	<i>x</i> = 1.5	A1	
	Madian guarda ana diana da ana	(2)	
(a)	Median < mode, negative skew	MI,AI (2)	
		(-)	
		[10]	
	Notes		
(a)	M1 attempt at both F(1.23) and F(1.24) and at least one correct or $\frac{x^2}{20}(9-2x)$	(x) = 0.5	
	$1^{\text{st}} \text{A1} \qquad \text{both awrt } 0.495 \text{ and awrt } 0.501 \text{ or } 1.238$ $2^{\text{nd}} \text{A1} \qquad \text{correct comment about the value of the } \underline{\text{median}} \text{ (not just } 0.495 < F(m)$	< 0.501)	
(b)	M1 attempting to differentiate. Multiply out and at least one term $x^n \rightarrow x^{n-1}$		
	$18x 6x^2 3$		
	At correct differentiation. Allow $\frac{1}{20} - \frac{1}{20}$ or $\frac{1}{10}x(3-x)$ of any exact equation	juivalent.	
	B1 correct pdf, including 0 otherwise and $0 \le x \le 2$		
(c)	M1 for an attempt to differentiate pdf and put = 0 or complete the square or a sketch Sketch should have the correct shape and show some positive values on x – axis. An attempt at completing the square should get to $p \pm q(x-1.5)^2$ Answer only scores M1A1		
(d)	 M1 reason must match their values/ sketch (NB mean = 1.2). Their values must be in [0, 2] No mode or median will score M0 unless their reason is based on their sketch A1 no ft correct answer only e.g. If their mode = 1 and they say "mode < median" score M1 for a correct reason but A0 even if they say "positive skew" since there is no ft and "negative skew" would follow incorrect working. 		

Quest Num	tion ber	Scheme	Marks
7.	(a)	<i>F</i> represents number of flaws per 50 m \Rightarrow <i>F</i> ~ Po(2)	
		$P(F = 5) = 0.9834 - 0.9473$ or $\frac{e^{-2}2^5}{5!}$	M1
		= 0.0361	A1 (2)
	(b)	<i>G</i> represents number of flaws per 200 m \Rightarrow <i>G</i> ~ Po(8)	B1
		$P(G < 7) = P(G \le 6) = 0.3134$	B1
		[<i>R</i> = number of 200 m rolls containing fewer than 7 flaws.] $R \sim B(4, 0.3134)$	M1A1ft
		$P(R = 1) = C_1^4 \times 0.3134 \times (1 - 0.3134)^3 = 0.40576$ awrt 0.406	M1 A1 (6)
	(c)	<i>N</i> represents number of flaws in a <i>x</i> m roll \Rightarrow <i>N</i> ~ Po(λ)	
		$P(N < 26) = P(\frac{25.5 - \lambda}{\sqrt{\lambda}})$ ±0.5, standardise	M1, M1 A1
		$\frac{25.5 - \lambda}{\sqrt{\lambda}} = 0.1 \qquad \text{gives} \lambda + 0.1\sqrt{\lambda} - 25.5 = 0$	B1
		$\sqrt{\lambda} = \frac{-0.1 \pm \sqrt{0.1^2 + 4 \times 25.5}}{2}$	dM1
		$\left[\sqrt{\lambda} = 5\right] \qquad \text{so} \lambda = 25$	A1
		$x = \frac{25}{2} \times 50$, so $x = 625$ m	dM1
		2	A1 (8)
			[16]
		Notes	
	(a)	M1 Writing $P(X \le 5) - P(X \le 4)$ or $\frac{e^{-\lambda}\lambda^5}{5!}$ (any value of λ) A1 av	vrt 0.0361
	(b)	1^{st} B1 Writing or using Po(8) 2^{nd} B1 awrt 0.313 (calc gives 0.3133742)	2)
		1 st M1 Recognize Binomial 1^{st} A1ft writing B(4, 'their 0.313') May be	by next line
		$2^{nd} dM1$ (dep. on $1^{st} M1$) $C_1^4 \times 'their 0.3134' \times (1 - 'their 0.3134')^3 = 2^{nd} A1$ as	wrt 0.406
	(c)	1 st M1 continuity correction used. Either 25.5 or 26.5	
		2^{nd} M1 standardising using their λ and $\sqrt{\lambda}$ for mean and sd. Any letter may be used	l or $\frac{x}{25}$ etc
		1 st A1 $\frac{25.5 - \lambda}{\sqrt{\lambda}} = z$ where $0 < z < 0.5$ May be implied by their correct quadratic	c (25.5 req'd)
		B1 0.1 (calc 0.09992) used as their z value in an equation. Allow e.g. $\frac{26-\mu}{\sigma} =$	0.1
		3^{rd} dM1 (dep on 2^{nd} M1) some attempt at solving their $3TQ \frac{-b\pm\sqrt{+ve}}{2a}$ 2^{nd} A	A1 25 (o.e.)
		4 th dM1 (dep on 3 rd M1) $\frac{\text{their } 25}{2} \times 50$ (If using $\frac{x}{25}$ award when $x =$) 3 rd A1	awrt 625

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE