

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code IA038885 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme		Marks
1.	$(r+1)(r-1) = r^2 - 1$	$(r-1) = r^2 - 1$ Allow $r^2 - r + r - 1$	
	$\sum_{r=1}^{200} r^2 = \frac{1}{6} 200(201)(401)$	Use of $\frac{1}{6}n(n+1)(2n+1)$ with $n = 200$	M1
	$\sum_{r=1}^{200} -1 = -200$	Cao (May be implied by their work)	B1
	$\sum_{r=1}^{200} (r^2 - 1) = 2686700 - 200 = 2686500$	2686500	A1
	Note use of $\sum_{r=1}^{200} -1 = -1$ gives a sum of 2686699 and usually scores B1M1B0A0		

Question Number	Scheme			
-	Mark (a) and (b) together			
2.(a)	2.(a) $-2-3i$ cao			
			(1)	
	Wa			
(b)	$p = -\operatorname{sum of roots} = -(-2+3i-2-3i)$			
	or	A correct approach for either p or q	M1	
	q = product of roots = $(-2 + 3i)(-2 - 3i)$			
	p = 4, q = 13	1 st A1: One value correct 2 nd A1: Both values correct Can be implied by a correct equation or expression e.g $z^2 + 4z + 13$	A1A1	
			(3)	
			Total 4	
	(b) W	-		
	(z-(-2+3i))(z-(-2-3i))	z-(-2+3i) and $z-(-2-3i)$ and attempt to expand (condone invisible brackets)	M1	
	Equation is $z^{2} + 4z + 13(=0)$ or p = 4, q = 13	1 st A1: One value correct 2 nd A1: Both values correct Condone use of x instead of z	A1 A1	
	(b) Way 3			
	$(-2+3i)^{2} + p(-2+3i) + q = 0 \Rightarrow (3p-12)i + q - 2p - 5 = 0$			
	(3p-12)i+q-2p-5=0	Substitutes $-2 + 3i$ or $-2 - 3i$ into the		
	$\Rightarrow 3p-12 = 0, q-2p-5$ $\Rightarrow p = \dots \text{ or } q = \dots$	given equation, compares real and imaginary parts and obtains a real value for p or a real value for q	M1	
	$p = 4, \ q = 13$	1^{st} A1: One value correct 2^{nd} A1: Both values correct	A1A1	
	(b) W	Inv A		
	$z^2 + pz + q = 0 =$	$\Rightarrow z = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$		
	$\frac{-p\pm\sqrt{p^2-4q}}{2} = -2\pm 3$		M1	
	Correct method to	find a value for <i>p</i>		
	p=4		Al	
	$p^2 - 4q = -36 \Rightarrow q = 13$ Correct value for q		A1	
	(b) W $(-2+3i)^2 + n(-2+3i) + a = 0$ and			
	$(-2+3i)^{2} + p(-2+3i) + q = 0 \text{ and } (-2-3i)^{2} + p(-2-3i) + q = 0$ $\Rightarrow 24i - 6pi = 0 \Rightarrow p = \dots$ M1: Substitutes both roots into the given equation and attempts to solve simultaneously to obtain a real value for p or a real value q		M1	
	p = 4, q = 13 p = 4, q = 13 $1^{st} A1: One value correct$ $2^{nd} A1: Both values correct$			

Number	Scheme		Marks
3. (a)	$\det \mathbf{A} = 4 \times -3 - a \times -2 (= 2a - 12)$	Any correct form (possibly un- simplified) of the determinant	B1
	$adj\mathbf{A} = \begin{pmatrix} -3 & 2\\ -a & 4 \end{pmatrix}$	Correct attempt at swapping elements in the major diagonal and changing signs in the minor diagonal. Three or four of the numbers in the matrix should be correct e.g. allow one slip	M1
	$\mathbf{A}^{-1} = \frac{1}{2a - 12} \begin{pmatrix} -3 & 2\\ -a & 4 \end{pmatrix}$	Correct inverse	A1
			(3)
(b)	$\begin{pmatrix} 4 & -2 \\ a & -3 \end{pmatrix} + \frac{2}{2a - 12} \begin{pmatrix} -3 & 2 \\ -a & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	Correct statement for A , "their" inverse and use of the correct identity matrix	M1
	$\Rightarrow \left(\begin{array}{cc} 4 - \frac{6}{2a - 12} & -2\\ a - \frac{2a}{2a - 12} & -3 \end{array}\right)$	$2 + \frac{4}{2a - 12} \\ 3 + \frac{8}{2a - 12} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	
	So e.g. $4 - \frac{6}{2a - 12} = 1 \Longrightarrow a =$	Adds their A and 2 x their A^{-1} and compares corresponding elements to form an equation in <i>a</i> and attempts to solve as far as $a = \dots$ or adds an element of their A and the corresponding element of 2 x their A^{-1} to form an equation in <i>a</i> and attempts to solve as far as $a = \dots$	M1
	a = 7 only	Cao (from a correct equation i.e. their A^{-1} might be incorrect) If they solve a second equation and get a different value for <i>a</i> , this mark can be withheld.	A1 (3)
			Total 6
	(b) Way 2 (does no	ot use the inverse)	Total 6
	$\mathbf{A} + 2\mathbf{A}^{-1} = \mathbf{I} \Longrightarrow \mathbf{A}^2 + 2\mathbf{I} = \mathbf{A}$ $\begin{pmatrix} 16 - 2a & -2 \\ a & 9 - 2a \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ a & -3 \end{pmatrix}$	Correct statement for $A^2 + 2I = A$ using A , "their" A^2 and use of the correct identity matrix	M1
	$\mathbf{A} + 2\mathbf{A}^{-1} = \mathbf{I} \Longrightarrow \mathbf{A}^2 + 2\mathbf{I} = \mathbf{A}$ $\begin{pmatrix} 16 - 2a & -2 \\ a & 9 - 2a \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ a & -3 \end{pmatrix}$	Correct statement for $A^2 + 2I = A$ using A , "their" A^2 and use of the correct	
	$\mathbf{A} + 2\mathbf{A}^{-1} = \mathbf{I} \Longrightarrow \mathbf{A}^2 + 2\mathbf{I} = \mathbf{A}$ $\begin{pmatrix} 16 - 2a & -2 \\ a & 9 - 2a \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ a & -3 \end{pmatrix}$	Correct statement for $A^2 + 2I = A$ using A , "their" A^2 and use of the correct identity matrix	

Question Number	Scheme			
4. (a)	$f(4) = \dots$ and $f(5) = \dots$	Attempt to evaluate both f(4) and f(5) NB f(5) = $2\sqrt{5}-3$ but this must be evaluated to score the A1	M1	
	f(4) = -1, $f(5) = 1.472Sign change (and f(x) is continuous) thereforea root \alpha exists between x = 4 and x = 5$	Both values correct $f(4) = -1$, and f(5) = 1.472 (awrt 1.5), sign change (or equivalent) and conclusion E.g. $f(4) = -1 < 0$ and $f(5) = 1.472 > 0$ so $4 < \alpha < 5$ scores M1A1	A1	
			(2)	
(b)		M1: $x^n \rightarrow x^{n-1}$		
	$f'(x) = \frac{3}{2}x^{\frac{1}{2}} - \frac{3}{2}x^{-\frac{1}{2}}$	A1: Either $\frac{3}{2}x^{\frac{1}{2}}$ or $-\frac{3}{2}x^{-\frac{1}{2}}$	M1A1A1	
		A1: Correct derivative		
	$x_1 = 4.5 - \frac{f(4.5)}{f'(4.5)} = 4.5 - \frac{0.1819805153}{2.474873734}$	Correct attempt at Newton-Raphson Can be implied by a correct answer or their working provided a correct derivative is seen or implied.	M1	
	= 4.426	Cao (Ignore any subsequent applications)	A1	
	Correct derivative followed by correct answer with <u>no</u> worl			
			(5)	
(c)	$\frac{5-\alpha}{1.472} = \frac{\alpha-4}{1}$ or $\frac{\alpha-4}{1} = \frac{5-4}{1.472+1}$	A correct statement for α or 5 - α or α - 4	M1	
	$\alpha(1.472+1) = 5 + 4 \times 1.472$ so $\alpha =$	Attempt to make " α " the subject (allow poor manipulation). Dependent on the previous M1.	d M1	
	$\alpha = 4.405$	cao	A1	
	There are no marks f	or interval bisection		
			(3)	
			Total 10	

Question	Scheme		
5. (a)	1	in third quadrant and one adrant. Can be vectors, ines.	
	O(4 - 3) numbers plotted of be indicated by a	epresenting the complex correctly. The points must scale (could be ticks on with coordinates or as s.	M1A1
			(2)
(b)	M1 requires a correct strategy e.g.		
	1. Gradient OP = $\frac{4}{3}$, Gradient OQ = $\frac{-3}{4}$ $\frac{4}{3}$	$\times -\frac{3}{4} = \dots$	
	2. Angles with Im axis are $\tan^{-1}\frac{3}{4}$ and $\tan^{-1}\frac{4}{3}$.	$an^{-1}\frac{3}{4} + tan^{-1}\frac{4}{3} = \dots$	-
	3. Angles with Re axis are $\tan^{-1}\frac{4}{3}$ and $\tan^{-1}\frac{3}{4}$. 180 – (ta	- ,	M1
	4. $OP^2 = 3^2 + 4^2$, $OQ^2 = 3^2 + 4^2$, $PQ^2 = 1^2 + 7^2 G$	$DP^2 + OQ^2 = \dots$	
	5. $\overrightarrow{OP} = \begin{pmatrix} -3 \\ -4 \end{pmatrix}, \ \overrightarrow{OQ} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \Rightarrow \overrightarrow{OP}.\overrightarrow{OQ} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$	·	
	$\frac{4}{3} \times -\frac{3}{4} = -1$ so right angle or 53.1 + 26.9 = 90 (accept :	53 + 27) or radians or	
	$\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{4}{3} = \frac{\pi}{2}$		A1
	$OP^2 + OQ^2 = PQ^2 = 50$ so right angle or $\overrightarrow{OP}.\overrightarrow{OQ} =$	0 so right angle	
	Correct work with no slips and conclu	ision	
			(2)
(c)	(c) $z_1 + z_2 = 1 - 7$ i		
	the point correct must be (could labelled	bint as shown. It must be nt $1 - 7$ i and it must be ly plotted. The point be indicated by a scale be ticks on axes) or d with coordinates or as lex number. May be on a axes.	B1
			(1)
(d)	Writes down another fact about OPQR other than OP being e.g. OP = OQ, OP is parallel to QR, QR = PR, QR i	s perpendicular to PR	B1
	Sufficient justification that OPQR is a square If their explanation could relate to something other t	and conclusion	B1
			(2) Total 7
			Total /

Question Number	Scheme		Marks
6. (a)	$\alpha + \beta = -\frac{5}{3}$ and $\alpha\beta = -\frac{1}{3}$	Both correct statements	B1
	$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = \dots$	Use of a correct identity for $\alpha^3 + \beta^3$ (may be implied by their work)	M1
	$\alpha^3 + \beta^3 = \left(-\frac{5}{3}\right)^3 + \left(-\frac{5}{3}\right) = -\frac{170}{27}$	Correct value (allow exact equivalent – even the correct recurring decimal - 6.296296)	A1
		e method – generally there are no marks	
	for finding th	e roots explicitly	
	$\alpha = \frac{-5 + \sqrt{37}}{6}, \ \beta = \frac{-5 - \sqrt{37}}{6} \Rightarrow \alpha^3 + \beta$	$\beta^{3} = \left(\frac{-5 + \sqrt{37}}{6}\right)^{3} + \left(\frac{-5 - \sqrt{37}}{6}\right)^{3} = -\frac{170}{27}$	
		ore 3/3 in (a)	
	B1: Both correct roots M1: 0	Cube and add A1: Correct value	(2)
(b)	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{-\frac{170}{27}}{-\frac{1}{2}} = \frac{170}{9}$	M1: Uses the identity $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta}$	(3) M1 A1
	β α $\alpha\beta$ $-\frac{1}{3}$ 9	A1: Correct sum (or equivalent)	
	$\frac{\alpha^2}{\beta} \times \frac{\beta^2}{\alpha} = \alpha\beta = -\frac{1}{3}$	Correct product	B1
	$x^2 - \frac{170}{9}x - \frac{1}{3}$	Uses $x^2 - (their sum) x + (their product)$ (= 0 not needed here)	M1
	$9x^2 - 170 \ x - 3 = 0$	This equation or any integer multiple including = 0. Follow through their sum and product.	Alft
			(5)
		• • •	Total 8
	· ·	using explicit roots	
	$\alpha = \frac{-5 + \sqrt{37}}{6}$	$\beta = \frac{-5 - \sqrt{37}}{6}$	
	$\frac{\alpha^2}{\beta} = \frac{85 - 14\sqrt{37}}{9}$	$\frac{\beta^2}{\beta}, \frac{\beta^2}{\alpha} = \frac{85 + 14\sqrt{37}}{9}$	
	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{170}{9}$	M1: Adds their $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$	M1A1
	$\alpha^2 \beta^2 1$	A1: Correct sum	
	$\frac{\alpha^2}{\beta} \times \frac{\beta^2}{\alpha} = \alpha\beta = -\frac{1}{3}$	Correct product	B1
	$x^2 - \frac{170}{9}x - \frac{1}{3}$	Uses $x^2 - (their sum) x + (their product)$ (= 0 not needed here)	M1
	$9x^2 - 170 \ x - 3 = 0$	This equation or any integer multiple including = 0. Follow through their sum and product.	Alft

Question Number	SchemeRotation, 30 degrees (anticlockwise), about OAllow $\frac{\pi}{6}$ (radians) for 30 degrees.Anticlockwise may be omitted but do not allow -30 degrees or 30 degrees clockwiseB1: Rotation B1: 30 degrees B1: About O		
7. (a)			
(b)	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	(3) B1 (1)	
(c)	$\mathbf{R} = \mathbf{P}\mathbf{Q} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	Multiplies P by their Q This statement is sufficient in correct order	M1
	$= \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$	Correct matrix	A1
(d)	$\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ k \end{pmatrix} = \begin{pmatrix} 1 \\ k \end{pmatrix}$	$\mathbf{R} \begin{pmatrix} 1 \\ k \end{pmatrix} = \begin{pmatrix} 1 \\ k \end{pmatrix}$ A correct statement but allow poor notation provided there is an indication that the candidate understands that the point (1, k) is mapped onto itself. This Method mark could be implied by a correct equation or correct follow through equation below.	(2) M1
	$\frac{\sqrt{3}}{2} + \frac{k}{2} = 1$ or $\frac{1}{2} - \frac{k\sqrt{3}}{2} = k$	One correct equation (not a matrix equation)	A1
	$\frac{\sqrt{3}}{2} + \frac{k}{2} = 1$ or $\frac{1}{2} - \frac{k\sqrt{3}}{2} = k \Longrightarrow k =$	Attempts to solve their equation for <i>k</i> . Dependent on the first M.	d M1
	$k = 2 - \sqrt{3}$	cao	A1
	$k = 2 - \sqrt{3}$ Solves both $\frac{\sqrt{3}}{2} + \frac{k}{2} = 1$ and $\frac{1}{2} - \frac{k\sqrt{3}}{2} = k$ or checks other component	Solves both equations explicitly to obtain the same correct value for <i>k</i> or clearly verifies that $k = 2 - \sqrt{3}$ is valid for the other equation	B1
			(5) Total 11

Question	Scheme		
8.(a)	$8t^{2} \times 16t = 16$ or $\left(\frac{16}{x}\right)^{2} = 32x$ or $y^{2} = 32 \times \left(\frac{16}{y}\right)$	Attempts to obtains an equation in one variable x , y or t	M1
	$t = \frac{1}{2}$ or $x = 2$ or $y = 8$	A correct value for <i>t</i> , <i>x</i> or <i>y</i>	A1
	(2, 8)	Correct coordinates following correct work with no other points	B1
(b)	$\left(y = \frac{16}{x} \Longrightarrow \right) \frac{dy}{dx} = -16x^{-2}$ or $\left(y + x\frac{dy}{dx} = 0 \Longrightarrow \right) \frac{dy}{dx} = -\frac{y}{x}$ or $\left(\dot{x} = 4, \ \dot{y} = -\frac{4}{t^2} \ \Longrightarrow \right) \frac{dy}{dx} = -\frac{1}{t^2}$	Correct derivative in terms of x , y and x , or t	(3) B1
	at (8, 2) $\frac{dy}{dx} = -\frac{16}{(8)^2} = -\frac{1}{4}$	Uses $x = 8$, $x = 8$ and $y = 2$, or $t = 2$	M1
	gradient of normal is 4	Correct normal gradient	A1
	y-2 = 4(x-8) or $y = 4x + c$ and uses x = 8 and $y = 2$ to find c	Correct straight line method using the point (8, 2) and a numerical gradient from their $\frac{dy}{dx}$ which is not the tangent gradient.	M1
	y = 4x - 30	Correct equation	A1
			(5)
(c)	$16t = 32t^2 - 30 \text{ or } y = \frac{y^2}{8} - 30$ $\text{ or } \frac{16\sqrt{x}}{\sqrt{8}} = 4x - 30$	Uses their straight line from part (b) and the parabola to obtain an equation in one variable (x, y or t)	M1
	$(4t+3)(4t-5) = 0 \Longrightarrow t = \dots$ $(y-20)(y+12) = 0 \Longrightarrow y = \dots$ $(2x-25)(2x-9) = 0 \Longrightarrow x = \dots$	Attempts to solve three term quadratic (see general guidance) to obtain $t =$ or $y =$ or $x =$ Dependent on the previous M	d M1
	Note if they solve the tangent with the p has roots $x = 543.53$ and 0.47 (See attempt to solve their 3TQ)	parabola this gives $x^2 - 544x + 256 = 0$ which ing these values would imply a correct	
	$t = -\frac{3}{4}$ and $\frac{5}{4}$ or $y = 20$ and -12 or $x = \frac{25}{2}$ and $\frac{9}{2}$	Correct values for <i>t</i> or <i>y</i> or <i>x</i>	A1
-	or $x = \frac{25}{2}$ and $\frac{9}{2}$ $t = -\frac{3}{4} \Rightarrow (x, y) = \text{or } t = \frac{5}{4} \Rightarrow (x, y) =$ $y = 20 \Rightarrow x = \text{ or } y = -12 \Rightarrow x =$ $x = \frac{25}{2} \Rightarrow y = \text{ or } x = \frac{9}{2} \Rightarrow y =$	Uses their values of <i>t</i> to find at least one point or uses their values of <i>y</i> to find at least one <i>x</i> or uses their values of <i>x</i> to find at least one <i>y</i> . Not dependent on previous method marks.	M1
	$(\frac{25}{2}, 20)$, $(\frac{9}{2}, -12)$	A1: One correct pair of coordinates A1: Both pairs correct	· A1 A1
			(6) Total 14
		1	10tal 14

Question	Schen	ne	Scheme		
9.(i)	$\sum_{r=1}^{n} r(r+1)(r+2) = 6 \text{ and } \frac{n(n+1)(n+2)(n+3)}{4} = \frac{1 \times 2 \times 3 \times 4}{4} = 6$ Minimum: lhs = rhs = 6			B1	
	Assume result true for $n = k$ so $\sum_{r=1}^{k} r(r+1)(r+2) = \frac{k(k+1)(k+2)(k+3)}{4}$ Minimum Assume result true $\sum_{r=1}^{k+1} r(r+1)(r+2) = \frac{k(k+1)(k+2)(k+3)}{4} + (k+1)(k+2)(k+3)$				
	Adds the $(k + 1)^{\text{th}}$ term = $\frac{1}{4}(k+1)(k+2)(k+3)(k+4)$	Ach Note from	ieves this result with no errors e this may be written down directly n the line above.	A1	
	If the result is <u>true for</u> $n = k$, then it is <u>true for</u> to be <u>true for</u> $n = 1$, then the	$\underline{\text{or}} n = k$	$\frac{x+1}{x+1}$ As the result has been shown	Alcso	
(ii)	$f(1) = 4^1 + 6 \times 1 + 8 = 18$		f(1) = 18 is the minimum	(5) B1	
	$f(k+1) - f(k) = 4^{k+1} + 6(k+1) + 8 - (4^k + 6k - 6k)$		M1: Attempts $f(k + 1) - f(k)$	M1	
	$= 3 \times 4^{k} + 6 = 3(4^{k} + 6k + 8) - 18k - 18$ $A1: 3(4^{k} + 6k + 8) \text{ or } 3f(k)$ $A1: -18 - 18k \text{ or } -18(k + 1)$				
	$f(k+1) = 3(4^{k} + 6k + 8) - 18(k+1) + f(k)$	Makes $f(k + 1)$ the subject	dM1		
	If the result is <u>true for</u> $n = k$, then it is <u>true for</u> to be <u>true for</u> $n = 1$, then the	$\underline{\text{or } n} = k$	x+1. As the result has been shown	Alcso	
				(6) Total 11	
(ii)	$f(1) = 4^1 + 6 \times 1 + 8 = 18$			B1	
ALT 1	$f(k+1) - 4f(k) = 4^{k+1} + 6(k+1) + 8 - 4(4^{k} + 6(k+1)) + 8 - 4(k+1) + 8 - 4(k+1)) + 8 - 4(k+1) + 8 - 4(k+1$	6k+8	M1: Attempts $f(k + 1) - 4f(k)$	M1	
	=-18k-18	A1: - A1: -		A1A1	
			f(k+1) the subject	dM1	
	If the result is <u>true for</u> $n = k$, then it is <u>true for</u> to be <u>true for</u> $n = 1$, then the			Alcso	
(ii)	$f(1) = 4^1 + 6 \times 1 + 8 = 18$			B1	
ALT 2	$f(k+1) = 4^{k+1} + 6(k+1) + 8$		M1: Attempts $f(k + 1)$	M1	
	$= 4(4^k + 6k + 8) - 18k - 18$		A1: $4(4^{k}+6k+8)$ or $4f(k)$ A1: $-18-18k$ or $-18(k+1)$	A1A1	
	f(k+1) = 4f(k) - 18(k+1)		Makes $f(k + 1)$ the subject (implicit with first M)	dM1	
	If the result is <u>true for</u> $n = k$, then it is <u>true for</u> $n = k+1$. As the result has been shown to be <u>true for</u> $n = 1$, then the result is <u>true for all n</u> .			Alcso	

	See general case below for $f(k) - mf(k)$			
	f(k) –	mf(k)		
(ii)	$f(1) = 4^1 + 6 \times 1 + 8 = 18$		B1	
	$f(k+1) - mf(k) = 4^{k+1} + 6(k+1) + 8 - m(4^{k})$	$f(k+1) - mf(k) = 4^{k+1} + 6(k+1) + 8 - m(4^k + 6k + 8)$ M1: Attempts $f(k+1) - mf(k)$		M1
	$= (4-m)(4^{k}+6k+8)-18k-18$ A1: $(4-m)(4^{k}+6k+8)or(4-m)f(k)$			A1A1
		A1: -18	-18k or -18(k+1)	
	f(k+1) = 4f(k) - 18(k+1) Makes $f(k+1)$ the subject		dM1	
	If the result is <u>true for</u> $n = k$, then it is <u>true for</u> $n = k+1$. As the result has been shown			Alcso
	to be true for $n = 1$, then	to be true for $n = 1$, then the result is true for all n .		

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE