

GCE

Edexcel GCE

Mathematics

Statistics 2 S2 (6684)

June 2008

advancing learning, changing lives

Mark Scheme (Final)

Mathematics

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

June 2008 6684 Statistics S2 Mark Scheme

Question	Scheme	Marks
Number 1(a)	E(X) = 5	B1
T(w)	Var(X) = $\frac{1}{12}(10-0)^2$ or attempt to use $\int \frac{x^2}{10} dx - \mu^2$	M1
	$= \frac{100}{12} = \frac{25}{3} = 8\frac{1}{3} = 8.3$ awrt 8.33	A1
(b)	$P(X \le 2) = (2-0) \times \frac{1}{10} = \frac{1}{5}$ or $\frac{2}{10}$ or 0.2	M1 A1 (2)
(c)	$\left(\frac{1}{5}\right)^5 = 0.00032 \text{ or } \frac{1}{3125} \text{ or } 3.2 \times 10^{-4} \text{ o.e.}$	M1 A1 (2)
(d)	$P(X \ge 8) \text{ or } P(X > 8)$ $P(X \ge 8 \mid X \ge 5) = \frac{P(X \ge 8)}{P(X \ge 5)}$ $= \frac{\frac{2}{10}}{\frac{5}{10}}$	M1 M1
	$=\frac{2}{5}$	A1 (3)
	alternative remaining time $\sim U[0,5]$ or $U[5,10]$ $P(X \ge 3 \text{ or } 8) = \frac{2}{5}$	M1 M1 A1 (Total 10)
	Notes (a) B1 cao M1 using the correct formula $\frac{(a-b)^2}{12}$ and subst in 10 or 0 or for an attempt at the integration they must increase the power of x by 1 and subtract their $E(X)$ squared. A1 cao (b) M1 for $P(X \le 2)$ or $P(X < 2)$ A1 cao (c) M1 (their b) 5. If the answer is incorrect we must see this. No need to check with your calculator A1 cao	

(d) writing $P(X \ge 8)$ (may use $>$ sign). If they do not write $P(X \ge 8)$ then it must be	
clear from their working that they are finding it. 0.2 on its own with no working gets	
M0	
M1 For attempting to use a correct conditional probability.	
NB this is an A mark on EPEN	
A1 2/5	
Full marks for 2/5 on its own with no incorrect working	
A 14	
Alternative	
M1 for $P(X \ge 3)$ or $P(X \ge 8)$ may use $>$ sign	
M1 using either U[0,5] or U[5,10]	
A1 2/5	

Question Number	Scheme					
2	$X \sim B(100,0.58)$ $Y \sim N (58, 24.36)$	B1 B1 B1				
	$[P(X > 50) = P(X \ge 51)]$ using 50.5 or 51.5 or 49.5 or 48.5	M1				
	$= P\left(z \ge \pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)\right) $ standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their μ and σ for M1	M1				
	$= P(z \ge -1.52)$ $= 0.9357$	A1				
	alternative	A1				
	$\overline{X} \sim B(100, 0.58)$ $Y \sim N (42, 24.36)$	B1 B1 B1				
	$[P(X < 50) = P(X \le 49)]$ using 50.5 or 51.5 or 49.5 or 48.5	M1				
	$= P\left(z \le \pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)\right) $ standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their μ and σ for M1	M1 A1				
	$= P(z \le 1.52)$ $= 0.9357$	A1				
-		(Total 7)				
	Notes The first 3 marks may be given if the following figures are seen in the standardisation formula :- 58 or 42, 24.36 or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94. Otherwise B1 normal B1 58 or 42 B1 24.36					
	M1 using 50.5 or 51.5 or 49.5 or 48.5. ignore the direction of the inequality. M1 standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their μ and σ . They may use $\sqrt{24}$ or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94 for σ or the $\sqrt{6}$ their variance.					
	A1 ± 1.52. may be awarded for $\pm \left(\frac{50.5 - 58}{\sqrt{24.36}} \right)$ or $\pm \left(\frac{49.5 - 42}{\sqrt{24.36}} \right)$ o.e.					
	A1 awrt 0.936					

Question Number	Scheme						Mark	(S	
3(a)	$X \sim \text{Po}(9)$ may be implied by calculations in part a or b						M1		
	$P(X \le 3) = 0.0212$ $P(X \ge 16) = 0.0220$								
	$CR X \le 3; \ \cup X \ge 16$							A1; A1	(3)
(b)	P(rejecting Ho) = 0.0212 + 0.02	20						M1	
	= 0.0432 or 0.0	433						A1 cao	
									(2)
								Tota	al 5
	Notes (a) M1 for using Po (9) – other values you might see which imply Po (9) are 0.0550, 0.0415, 0.9780, 0.9585, 0.9889,0.0111,0.0062 or may be assumed by at least one correct region. A1 for $X \le 3$ or $X < 4$ condone c1 or CR instead of X A1 for $X \ge 16$ or $X > 15$ They must identify the critical regions at the end and not just have them as part of their working. Do not accept $P(X \le 3)$ etc gets A0 (b) if they use 0.0212 and 0.0220 they can gain these marks regardless of the critical regions in part a. If they have not got the correct numbers they must be adding the values for their critical regions.(both smaller than 0.05) You may need to look these up. The most common table values for lambda = 9 are in this table $ \frac{x}{2} = \frac{3}{3} = \frac{4}{4} = \frac{5}{5} = \frac{14}{14} = \frac{15}{15} = \frac{16}{16} = \frac{17}{17} = \frac{18}{18} = \frac{1}{18} = \frac{1}{18}$								

Question Number	Scheme	Marks
4(a)	<i>X</i> ∼ B(11000, 0.0005)	M1 A1 (2)
(b)	$E(X) = 11000 \times 0.0005 = 5.5$	B1
	$Var (X) = 11000 \times 0.0005 \times (1 - 0.0005)$ = 5.49725	B1 (2)
(c)	$X \sim Po (5.5)$	M1 A1
	$P(X \le 2) = 0.0884$	dM1 A1 (4)
		Total 8
	Notes	
	(a) M1 for Binomial, A1 fully correct These cannot be awarded unless seen in part a	
	(b)B1 cao B1 also allow 5.50, 5.497, 5.4973, do not allow 5.5	
	 (c) M1 for Poisson A1 for using Po (5.5) M1 this is dependent on the previous M mark. It is for attempting to find P(X ≤ 2) A1 awrt 0.0884 Correct answer with no working gets full marks 	
	Special case If they use normal approximation they could get M0 A0 M1 A0 if they use 2.5 in their standardisation.	
	NB exact binomial is 0.0883	

Question Number	Scheme			
5(a)	$X \sim B(15, 0.5)$	B1 B1	(2)	
(b)	$P(X=8) = P(X \le 8) - P(X \le 7) \text{ or } \left(\frac{15!}{8!7!}(p)^8(1-p)^7\right)$	M1	(2)	
	= 0.6964 - 0.5	A1		
	= 0.1964 awrt 0.196		(2)	
(c)	$P(X \ge 4) = 1 - P(X \le 3)$	M1		
	= 1 - 0.0176			
	= 0.9824	A1	(2)	
(d)	$H_0: p = 0.5$ $H_1: p > 0.5$	B1 B1		
	$X \sim B(15, 0.5)$			
	$ P(X \ge 13) = 1 - P(X \le 12) $ $= 1 - 0.9963 $ $ [P(X \ge 12) = 1 - 0.9824 = 0.0176] $ $= 1 - 0.9963 $ $= 1 - 0.9963 = 0.0037 $ att $P(X \ge 13)$	M1		
	$= 0.0037 CR X \ge 13 awrt 0.0037 / CR X \ge 13$	A1		
	$0.0037 < 0.01$ $13 \ge 13$			
	Reject H ₀ or it is significant or a correct statement in context from their values	M1		
	There is sufficient evidence at the 1% significance level that the coin is <u>biased in favour of heads</u>	A1	(6)	
	Or There is evidence that Sues belief is correct			
	Notes			
	(a) B1 for Binomial B1 for 15 and 0.5 must be in part a This need not be in the form written			
	(b) M1 attempt to find P (X = 8) any method. Any value of p A1 awrt 0.196 Answer only full marks			
	(c) M1 for 1 - P ($X \le 3$). A1 awrt 0.982			

(d) B1 for correct H_0 . must use p or π B1 for correct H_1 must be one tail must use p or π M1 attempt to find $P(X \ge 13)$ correctly. E.g. $1 - P(X \le 12)$ A1 correct probability or CR To get the next 2 marks the null hypothesis must state or imply that (p) = 0.5M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region. A1 This depends on their M1 being awarded for rejecting H₀. Conclusion in context. Must use the words biased in favour of heads or biased against tails or sues belief is correct. NB this is a B mark on EPEN They may also attempt to find P(X < 13) = 0.9963 and compare with 0.99

Question Number	Scheme			Marks
6(a)	Calls occur singly Calls occur at a constant rate Calls occur independently or	· · · · · · · · · · · · · · · · · · ·	B1 B1	(2)
(b) (i)	$X \sim Po(4.5)$ $P(X=5) = P(X \le 5) - P(X \le 5$		M1 M1	
	= 0.1708		A1	(3)
(ii)	$P(X > 8) = 1 - P(X \le 8)$ = 1 - 0.9597		M1	
(c)	= 0.0403		A1	(2)
	$H_0: \lambda = 9 \ (\lambda = 18)$ $H_1: \lambda > 9 \ (\lambda > 18)$	may use λor μ	B1	
	$X \sim \text{Po}(9)$	may be implied	B1	
	$P(X \ge 14) = 1 - P(X \le 13)$ = 1 - 0.9261	$P(X \ge 15) = 1 - 0.9780 = 0.0220$	M1	
	= 0.0739 $0.0739 > 0.05$	$CR \ X \ge 15$ awrt 0.0739 $14 \le 15$	A1	
	Accept H ₀ . or it is not signif	icant or a correct statement in context from their values	M1	
	There is insufficient evidence agent has increased.	e to say that the <u>number of calls per hour</u> handled by the	A1	(6)
	same reason. Award the first B1 if the Special case if they don't pu award B0B1 (b) correct answers only score	it in the word calls but write two correct statements re full marks ied by them using it in their calculations in (i) or (ii)		

(ii) M1 for $1 - P(X \le 8)$ A1 only awrt 0.0403

(c) B1~ both . Must be one tail test. They may use λ or μ and either 9 or 18 and match H_0 and H_1

M1 Po (9) may be implied by them using it in their calculations.

M1 attempt to find $P(X \ge 14)$ eg $1 - P(X \le 13)$ or $1 - P(X \le 14)$

A1 correct probability or CR

To get the next2 marks the null hypothesis must state or imply that $(\lambda) = 9$ or 18

M1 for a correct statement based on their probability or critical region or a correct contextualised statement that implies that.

A1. This depends on their M1 being awarded for accepting H_0 . Conclusion in context. Must have <u>calls per hour</u> has <u>not increased</u>. Or the <u>rate</u> of <u>calls</u> has <u>not increased</u>.

Any statement that has the word **calls** in and implies the **rate not increasing** e.g. no evidence that the rate of calls handled has increased Saying the number of calls has not increased gains A0 as it does not imply rate NB this is an A mark on EPEN

They may also attempt to find P(X < 14) = 0.9261 and compare with 0.95

Question Number	Sch	Marks	
7(a)	$\int_0^1 \frac{1}{2} x dx = \left[\frac{1}{4} x^2 \right]_0^1 = \frac{1}{4} \qquad \text{oe}$	attempt to integrate both parts	M1
	$\int_{1}^{2} kx^{3} dx \left[\frac{1}{4} kx^{4} \right]_{1}^{2} = 4k - \frac{1}{4}k \text{oe}$	both answer correct	A1
	$\frac{1}{4} + 4k - \frac{1}{4}k = 1$ $15k 3$	adding two answers and putting = 1	dM1dep on previous M
	$\frac{15k}{4} = \frac{3}{4}$ $k = \frac{1}{5}$		A1 (4)
(b)	$\int_0^1 \frac{1}{2} x^2 dx = \left[\frac{1}{6} x^3 \right]_0^1 = \frac{1}{6}$	attempt to integrate $xf(x)$ for one part	M1
	$\int_{1}^{2} \frac{1}{5} x^{4} dx = \left[\frac{1}{25} x^{5} \right]_{1}^{2} = \frac{32}{25} - \frac{1}{25}$	1/6	A1
	$\begin{bmatrix} 25 \\ \end{bmatrix}_{1} = \frac{31}{25} \text{ or } 1.24$		A1
	$E(X) = \frac{1}{6} + \frac{31}{25}$		
	$=\frac{211}{150}=1\frac{61}{150}=1.40\overset{\bullet}{6}$		A1 (4)
(c)			
	$F(x) = \int_0^x \frac{1}{2} t dt (\text{for } 0 \le x \le 1)$	ignore limits for M	M1
	$=\frac{1}{4}x^2$	must use limit of 0	A1
	$F(x) = \int_{1}^{x} \frac{1}{5} t^{3} dt; + \int_{0}^{1} \frac{1}{2} t dt \text{ (for } 1 < x \le 2)$	need limit of 1 and variable upper limit; need limit 0 and 1	M1; M1
	$= \frac{1}{20}x^4 + \frac{1}{5}$		A1

	$F(x) \begin{cases} 0 & x < 0 \\ \frac{1}{4}x^2 & 0 \le x \le 1 \\ \frac{1}{20}x^4 + \frac{1}{5} & 1 < x \le 2 \\ 1 & x > 2 \end{cases}$ middle pair ends	B1 ft B1	(7)
(d)	F(m) = 0.5 either eq $\frac{1}{20}m^4 + \frac{1}{5} = 0.5$ eq for their $1 \le x \le 2$ $m = \sqrt[4]{6}$ or 1.57 or awrt 1.57	M1 A1ft A1	(3)
(e)	negative skew This depends on the previous B1 being awarded. One of the following statements which must be compatible with negative skew and their figures. If they use mode then they must have found a value for it Mean < Median Mean < mode Median < mode) Median < mode Sketch of the pdf.	B1 dB1	(2)
	 Notes (a) M1 for adding two integrals together =1, ignore limits A1 for correct integration, ignore limits M1 using correct limits A1 cso (b) M1 attempting to use integral of x f(x) A1 correct two integrals added with limits A1 correct integration ignore limits A1 awrt 1.41 (c) M1 Att to integrate ½t (they need to increase the power by 1). Ignore limits for method mark A1 ¼x² allow use of t. must have used/implied use of limit of 0. This must be on its own without anything else added M1 att to integrate ∫₁x¹ t³ dt and correct limits. 		

M1 $\int_0^1 \frac{1}{2}t \, dt +$ Att to integrate using limits 0 and 1. no need to see them put 0

they must add this to their $\int_1^x \frac{1}{5} t^3 dt$. may be given if they add 1/4

Alternative method for these last two M marks

M1 for att to
$$\int \frac{1}{5} t^3$$
 dt and putting + C

M1 use of F(2) = 1 to find C

A1
$$\frac{1}{20}x^4 + \frac{1}{5}$$
 must be correct

B1 middle pair followed through from their answers. condone them using < or < incorrectly they do not need to match up

B1 end pairs. condone them using \leq or \leq . They do not need to match up

NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if 0 < x < 1 is correct they can get M1 A1 otherwise M0 A0. if 3 < x < 4 is correct they can get M1 A1A1 otherwise M0 A0A0. you cannot award B1ft if they show no working unless the middle parts are correct.

(d) M1 either of their
$$\frac{1}{4}x^2$$
 or $\frac{1}{20}x^4 + \frac{1}{5} = 0.5$
A1 for their $F(X) < 1 < x < 2 = 0.5$

A1 cao

If they add both their parts together and put = 0.5 they get M0 If they work out both parts separately and do not make the answer clear they can get M1 A1 A0

(e) B1 negative skew only

B1 Dependent on getting the previous B1. their reason must follow through from their figures.