GCE

Edexcel GCE
Mathematics
Statistics 2 S2 (6684)

J une 2008
advancing learning, changing lives
Mark Scheme (Final)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

J une 2008
6684 Statistics S2
Mark Scheme

Question Number	Scheme	Marks
1(a)	$\mathrm{E}(X)=5$ $\operatorname{Var}(X)=\frac{1}{12}(10-0)^{2} \quad$ or attempt to use $\int \frac{x^{2}}{10} d x-\mu^{2}$ $=\frac{100}{12}=\frac{25}{3}=8 \frac{1}{3}=8 . \dot{3}$ awrt 8.33	B1 M1 A1
(b)	$\mathrm{P}(X \leq 2)=(2-0) \times \frac{1}{10}=\frac{1}{5} \quad$ or $\frac{2}{10} \quad$ or 0.2	M1 A1 (2)
(c)	$\left(\frac{1}{5}\right)^{5}=0.00032 \text { or } \frac{1}{3125} \text { or } 3.2 \times 10^{-4} \text { o.e. }$	M1 A1 (2)
(d)	$\begin{aligned} & \mathrm{P}(\mathrm{X} \geq 8) \text { or } \mathrm{P}(X>8) \\ & \begin{aligned} \mathrm{P}(X \geq 8 \mid X \geq 5) & =\frac{\mathrm{P}(\mathrm{X} \geq 8)}{\mathrm{P}(\mathrm{X} \geq 5)} \\ & =\frac{2 / 10}{5 / 10} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$
	$=\frac{2}{5}$	A1 (3)
	alternative $\text { remaining time } \sim \mathrm{U}[0,5] \text { or } \mathrm{U}[5,10] \quad \mathrm{P}(\mathrm{X} \geq 3 \text { or } 8)=\frac{2}{5}$	M1 M1 A1 (Total 10)
	Notes (a) B1 cao M1 using the correct formula $\frac{(a-b)^{2}}{12}$ and subst in 10 or 0 or for an attempt at the integration they must increase the power of x by 1 and subtract their $\mathrm{E}(X)$ squared. Al cao (b) M1 for $\mathrm{P}(X \leq 2)$ or $\mathrm{P}(X<2)$ A1 cao (c) M1 (their b) ${ }^{5}$. If the answer is incorrect we must see this. No need to check with your calculator A1 cao	

6684/01 Statistics S2

J une 2008 Advanced Subsidiary/ Advanced Level in GCE Mathematics
(d) writing $\mathrm{P}(X \geq 8)$ (may use $>$ sign). If they do not write $\mathrm{P}(X \geq 8)$ then it must be clear from their working that they are finding it. 0.2 on its own with no working gets M0

M1 For attempting to use a correct conditional probability. NB this is an A mark on EPEN
A1 2/5
Full marks for $2 / 5$ on its own with no incorrect working

Alternative
M1 for $\mathrm{P}(X \geq 3)$ or $\mathrm{P}(X \geq 8)$ may use $>\operatorname{sign}$
M1 using either $\mathrm{U}[0,5]$ or $\mathrm{U}[5,10]$
A1 2/5

Question Number	Scheme	Marks
2	$\begin{aligned} & X \sim \mathrm{~B}(100,0.58) \\ & Y \sim \mathrm{~N}(58,24.36) \end{aligned}$ $[\mathrm{P}(X>50)=\mathrm{P}(X \geq 51)]$ using 50.5 or 51.5 or 49.5 or 48.5 $=\mathrm{P}\left(z \geq \pm\left(\frac{50.5-58}{\sqrt{24.36}}\right)\right)$ standardising $50.5,51,51.5,48.5,49,49.5$ and their μ and σ for M1 $=P(\mathrm{z} \geq-1.52 \ldots)$ $=0.9357$ alternative $\begin{aligned} & X \sim \mathrm{~B}(100,0.58) \\ & Y \sim \mathrm{~N}(42,24.36) \end{aligned}$ $\begin{aligned} {[\mathrm{P}(X<50)} & =\mathrm{P}(X \leq 49)] \\ & =\mathrm{P}\left(z \leq \pm\left(\frac{49.5-42}{\sqrt{24.36}}\right)\right) \\ & =\mathrm{P}(\mathrm{z} \leq 1.52 \ldots) \\ & =0.9357 \end{aligned}$ using 50.5 or 51.5 or 49.5 or 48.5 standardising $50.5,51,51.5,48.5,49,49.5$ and their μ and σ for M1	B1 B1 B1 M1 M1 A1 A1 (7) B1 B1 B1 M1 M1 A1 A1
	Notes The first 3 marks may be given if the following figures are seen in the standardisation formula :- 58 or 42, $24.36 \text { or } \sqrt{ } 24.36 \text { or } \sqrt{ } 24.4 \text { or awrt } 4.94$ Otherwise B1 normal B1 58 or 42 B1 24.36 M1 using 50.5 or 51.5 or 49.5 or 48.5 . ignore the direction of the inequality. M1 standardising $50.5,51,51.5,48.5,49,49.5$ and their μ and σ. They may use $\sqrt{ } 24$ or $\sqrt{ } 24.36$ or $\sqrt{ } 24.4$ or awrt 4.94 for σ or the $\sqrt{ }$ of their variance. $\mathrm{A} 1 \pm 1.52$. may be awarded for $\pm\left(\frac{50.5-58}{\sqrt{24.36}}\right)$ or $\pm\left(\frac{49.5-42}{\sqrt{24.36}}\right)$ o.e. A1 awrt 0.936	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 3(a)

(b) \& \begin{tabular}{l}
$$
X \sim \operatorname{Po}(9)
$$

may be implied by calculations in part a or b
$$
\begin{aligned}
& \mathrm{P}(X \leq 3)=0.0212 \\
& \mathrm{P}(X \geq 16)=0.0220
\end{aligned}
$$
$$
\mathrm{CR} X \leq 3 ; \cup X \geq 16
$$
$$
\begin{aligned}
\mathrm{P}(\text { rejecting Ho }) & =0.0212+0.0220 \\
& =0.0432 \text { or } 0.0433
\end{aligned}
$$

 \&

M1

A1; A1

(3)

M1

A1 cao

(2)

Total 5
\end{tabular}

\hline \& | Notes |
| :--- |
| (a) M1 for using Po (9) - other values you might see which imply Po (9) are 0.0550, $0.0415,0.9780,0.9585,0.9889,0.0111,0.0062$ or may be assumed by at least one correct region. |
| A1 for $X \leq 3$ or $X<4$ condone c 1 or CR instead of X |
| A1 for $X \geq 16$ or $X>15$ |
| They must identify the critical regions at the end and not just have them as part of their working. Do not accept $\mathrm{P}(X \leq 3)$ etc gets A0 |
| (b) if they use 0.0212 and 0.0220 they can gain these marks regardless of the critical regions in part a. If they have not got the correct numbers they must be adding the values for their critical regions.(both smaller than 0.05) You may need to look these up. The most common table values for lambda $=9$ are in this table |
| A1 awrt 0.0432 or 0.0433 |
| Special case |
| If you see 0.0432 / 0.0433 and then they go and do something else with it eg $1-$ 0.0432 award M1 A0 | \&

\hline
\end{tabular}

Question Number	Scheme	Marks
4(a)	$X \sim \mathrm{~B}(11000,0.0005)$	M1 A1 (2)
	$\begin{aligned} \operatorname{Var}(X) & =11000 \times 0.0005 \times(1-0.0005) \\ & =5.49725 \end{aligned}$	B1 (2)
(c)	$\mathrm{X} \sim \mathrm{Po}(5.5)$	M1 A1
	$\mathrm{P}(X \leq 2)=0.0884$	dM1 A1 (4)
		Total 8
	$\underline{\text { Notes }}$ (a) M1 for Binomial, A1 fully correct These cannot be awarded unless seen in part a (b)B1 cao B1 also allow 5.50, 5.497, 5.4973, do not allow 5.5 (c) M1 for Poisson A1 for using Po (5.5) M1 this is dependent on the previous M mark. It is for attempting to find $\mathrm{P}(X \leq 2)$ A1 awrt 0.0884 Correct answer with no working gets full marks Special case If they use normal approximation they could get M0 A0 M1 A0 if they use 2.5 in their standardisation. NB exact binomial is 0.0883	

6684/01 Statistics S2

J une 2008 Advanced Subsidiary/ Advanced Level in GCE Mathematics
(d) B1 for correct H_{0}. must use p or π

B1 for correct H_{1} must be one tail must use p or π
M1 attempt to find $\mathrm{P}(X \geq 13)$ correctly. E.g. $1-\mathrm{P}(X \leq 12)$
A1 correct probability or CR
To get the next 2 marks the null hypothesis must state or imply that $(p)=0.5$
M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region.

A1 This depends on their M1 being awarded for rejecting H_{0}. Conclusion in context. Must use the words biased in favour of heads or biased against tails or sues belief is correct . NB this is a B mark on EPEN.

They may also attempt to find $\mathrm{P}(X<13)=0.9963$ and compare with 0.99

\(\left.$$
\begin{array}{|l|l|}\hline \text { (ii) } \begin{array}{l}\text { M1 for } 1-\mathrm{P}(X \leq 8) \\
\text { A1 only awrt } 0.0403\end{array}
$$

(c) \mathrm{B} 1 \quad both . Must be one tail test. They may use \lambda or \mu and either 9 or 18 and

match \mathrm{H}_{0} and \mathrm{H}_{1}

M1 Po (9) may be implied by them using it in their calculations.

M1 attempt to find \mathrm{P}(X \geq 14) eg 1-\mathrm{P}(X \leq 13) or 1-\mathrm{P}(X<14)

A1 correct probability or \mathrm{CR}\end{array}\right]\)| To get the next2 marks the null hypothesis must state or imply that $(\lambda)=9$ or 18 |
| :--- |
| M1 for a correct statement based on their probability or critical region |
| or a correct contextualised statement that implies that. |
| A1. This depends on their M1 being awarded for accepting H_{0}. Conclusion in |
| context. Must have calls per hour has not increased. Or the rate of calls has not |
| increased. |
| Any statement that has the word calls in and implies the rate not increasing |
| e.g. no evidence that the rate of calls handled has increased |
| Saying the number of calls has not increased gains A0 as it does not imply rate |
| NB this is an A mark on EPEN |
| They may also attempt to find $\mathrm{P}(X<14)=0.9261$ and compare with 0.95 |

Question Number			Marks
7(a)	$\int_{0}^{1} \frac{1}{2} x \mathrm{~d} x=\left[\frac{1}{4} x^{2}\right]_{0}^{1}=\frac{1}{4} \quad$ oe $\int_{1}^{2} k x^{3} \mathrm{~d} x\left[\frac{1}{4} k x^{4}\right]_{1}^{2}=4 k-\frac{1}{4} k \quad$ oe	attempt to integrate both parts both answer correct	M1 A1
	$\begin{aligned} \frac{1}{4}+4 k-\frac{1}{4} k & =1 \\ \frac{15 k}{4} & =\frac{3}{4} \\ k & =\frac{1}{5} \end{aligned}$	adding two answers and putting $=1$	dM1dep on previous M A1 (4)
(b)	$\int_{0}^{1} \frac{1}{2} x^{2} \mathrm{~d} x=\left[\frac{1}{6} x^{3}\right]_{0}^{1}=\frac{1}{6}$	attempt to integrate $x \mathrm{f}(x)$ for one part $1 / 6$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$
	$\begin{aligned} \int_{1}^{2} \frac{1}{5} x^{4} \mathrm{~d} x=\left[\frac{1}{25} x^{5}\right]_{1}^{2} & =\frac{32}{25}-\frac{1}{25} \\ & =\frac{31}{25} \text { or } 1.24 \end{aligned}$		A1
	$\begin{aligned} \mathrm{E}(X) & =\frac{1}{6}+\frac{31}{25} \\ & =\frac{211}{150}=1 \frac{61}{150}=1.40 \dot{6} \end{aligned}$		A1 (4)
(c)	$\begin{aligned} \mathrm{F}(x) & =\int_{0}^{x} \frac{1}{2} t \mathrm{dt} \quad(\text { for } 0 \leq x \leq 1) \\ & =\frac{1}{4} x^{2} \end{aligned}$	ignore limits for M must use limit of 0	M1 A1
	$\begin{aligned} \mathrm{F}(x) & =\int_{1}^{x} \frac{1}{5} t^{3} \mathrm{dt} ;+\int_{0}^{1} \frac{1}{2} t \mathrm{dt} \quad(\text { for } 1<x \leq 2) \\ & =\frac{1}{20} x^{4}+\frac{1}{5} \end{aligned}$	need limit of 1 and variable upper limit; need limit 0 and 1	M1; M1 A1

	$\mathrm{F}(x)\left\{\begin{array}{cc} 0 & x<0 \\ \frac{1}{4} x^{2} & 0 \leq x \leq 1 \\ \frac{1}{20} x^{4}+\frac{1}{5} & 1<x \leq 2 \\ 1 & x>2 \end{array} \quad \text { middle pair } \quad\right. \text { ends }$	B1 ft B1 (7)
(d)	$\mathrm{F}(\mathrm{m})=0.5$ either eq $\frac{1}{20} m^{4}+\frac{1}{5}=0.5$ eq for their $1 \leq x \leq 2$ $m=\sqrt[4]{6}$ or 1.57 or awrt 1.57	M1 Alft A1
(e)	negative skew This depends on the previous B1 being awarded. One of the following statements which must be compatible with negative skew and their figures. If they use mode then they must have found a value for it Mean < Median Mean < mode Mean $<$ median ($<$ mode) Median < mode Sketch of the pdf.	B1 dB1 (2)
	Notes (a) M1 for adding two integrals together $=1$, ignore limits A1 for correct integration, ignore limits M1 using correct limits A1 cso (b) M1 attempting to use integral of $x \mathrm{f}(x)$ A1 correct two integrals added with limits A1 correct integration ignore limits Al awrt 1.41 (c) M1 Att to integrate $\frac{1}{2} \mathrm{t}$ (they need to increase the power by 1). Ignore limits for method mark A1 $\frac{1}{4} x^{2}$ allow use of t. must have used/implied use of limit of 0 . This must be on its own without anything else added M1 att to integrate $\int_{1}^{x} \frac{1}{5} t^{3} \mathrm{dt}$ and correct limits.	

