June 2008
6665 Core Mathematics C3

Question Number	Scheme	Marks
1 a)	$\begin{aligned} & 2=e^{2 x+1} \quad \text { Take natural logarithms } \\ & \ln 2=2 x+1 \\ & x=\frac{\ln 2-1}{2} \\ & \hline \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \text { (2) } \\ \hline \end{array}$
b)	$\begin{aligned} & \frac{d y}{d x}=8 e^{2 x+1} \\ & =8 e^{\ln 2}=16 \\ & y=8=16\left(x-\frac{\ln 2-1}{2}\right) \\ & y=16 x-8 \ln 2+16 \\ & (a=16, b=16-8 \ln 2) \end{aligned}$	M1 M1 A1, A1 (4) (6 marks)
2 a)	$\begin{aligned} & f(x)=5 \cos x+12 \sin x=R \cos (x-a) \\ & =R \cos x \cos a+R \sin x \sin a \\ & \text { Equating coefficients: } \\ & 5=R \cos a \\ & 12=R \sin a \\ & \tan a=\frac{12}{5} \\ & a=1.176, R=13 \end{aligned}$	M1 M1 A1, A1 (4)
b)	$\begin{aligned} & 13 \cos (x-1.18)=6 \\ & x=1.18= \pm 1.09 \\ & x=2.27,0.0849 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1, A1 (for }+/- \text {) } \\ \hline \text { A1, A1 (5) } \\ \hline \end{array}$
c)	i) 13 (ft for value of R) ii) $x-1.18=0$ (implied or explanation why) $x=1.18(\mathrm{ft})$	B1 (1) M1 B1 (2) $(12$ marks)

3a)		B1 shape A1 intersects (2)

This is a mark scheme for Edexcel 6665: C3 Mathematics for the June 2008 exam. The mark scheme cannot be guaranteed to be accurate and should only be used as a guide. Distribution of marks are estimates.

5 a)	$\begin{aligned} & \frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta} \equiv 1 \\ & 1+\cot ^{2} \theta \equiv \operatorname{cosec}^{2} \theta \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \text { (2) } \end{array}$
b)	$\begin{aligned} & \text { Substitute } \cot ^{2} \theta=\operatorname{cosec}^{2} \theta-1 \\ & 2 \operatorname{cosec}^{2} \theta-9 \operatorname{cosec} \theta-5 \overline{=} 0 \\ & (2 \operatorname{cosec} \theta+1)(\operatorname{cosec} \theta-5)=0 \\ & \operatorname{cosec} \theta=-\frac{1}{2}, 5 \\ & \text { When } \operatorname{cosec} \theta=\frac{1}{2} \text {, there is no solution } \\ & \theta=11.5,168.5 \end{aligned}$	M1 M1 M1 A1 A1, A1 (6) (8 marks)
6 a)	i) $\frac{d y}{d x}=3 e^{3 x}(\sin x+2 \cos x)+e^{3 x}(\cos x-2 \sin x)$ Correct $\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{A} 1$, Correct $\mathrm{g}^{\prime}(\mathrm{x})$ A1, use of chain rule M1 $=e^{3 x}(\sin x+7 \cos x)$ (or simplified answer-A2) ii) $\frac{d y}{d x}=3 x^{2} \ln (5 x+2)+\frac{5 x^{3}}{5 x+2}$ Use of chain rule M1. Correct $\mathrm{g}^{\prime}(\mathrm{x}) \mathrm{A} 1$, correct answer,A1.	A1, M1 A1 (3) M1, A1, A1 (3)
b)	$\begin{aligned} & \frac{d y}{d x}=\frac{6(x+1)^{3}-2\left(3 x^{2}+6 x-7\right)(x+1)}{(x+1)^{4}} \\ & \text { M1 (Quotient), A1 correct fraction. } \\ & \frac{d y}{d x}=\frac{6 x^{2}+12 x+6-6 x^{2}-12 x+14}{(x+1)^{3}} \end{aligned}$ Remove ($x+1$), M1. Expand brackets A1. $\frac{d y}{d x}=\frac{20}{(x+1)^{3}}$	M1, A1 M1, A1 A1 (5)
c)	$\begin{aligned} & \frac{d^{2} y}{d x^{2}}=\frac{-20 \times 3(x+1)^{2}}{(x+1)^{6}} \\ & =-\frac{60}{(x+1)^{4}}=-\frac{15}{4} \\ & 16=(x+1)^{4} \\ & x=1,-3 \end{aligned}$	M1 M1 A1 (3) (14 marks)
7 a)	$\begin{aligned} & f(1.4)=-0.568 \\ & f(1.45)=0.246 \end{aligned}$ Change in sign, therefore root in the interval.	A1 B1 (2)
b)	$\begin{aligned} & 3 x^{3}-2 x-6=0 \\ & x^{3}=\frac{2 x}{3}+2 \\ & x^{2}=\frac{2}{3}+\frac{2}{x} \\ & x=\sqrt{\frac{2}{x}+\frac{2}{3}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$ A1 (3)
c)	$\mathrm{X}_{0}=1.43 ; \mathrm{x}_{1}=1.4371 ; \mathrm{x}_{2} 1.4347 ; \mathrm{x}_{3}=1.4355$	A1, A1, A1
d)	$\begin{equation*} f(1.4345)=-0.133 ; f(1.4355)=0.00323 \tag{3} \end{equation*}$ There is a change in sign between 1.4345 and 1.4355 - rounds to 1.435 - there must be a root in the interval.	$\begin{array}{\|ll} \hline \text { A1, A1 } \\ \text { B1 } & \begin{array}{l} \text { (3) } \\ \text { (11 marks) } \end{array} \\ \hline \end{array}$

