

Mark Scheme (Pre-Standardisation) January 2008

GCE

GCE Mathematics (6679/01)

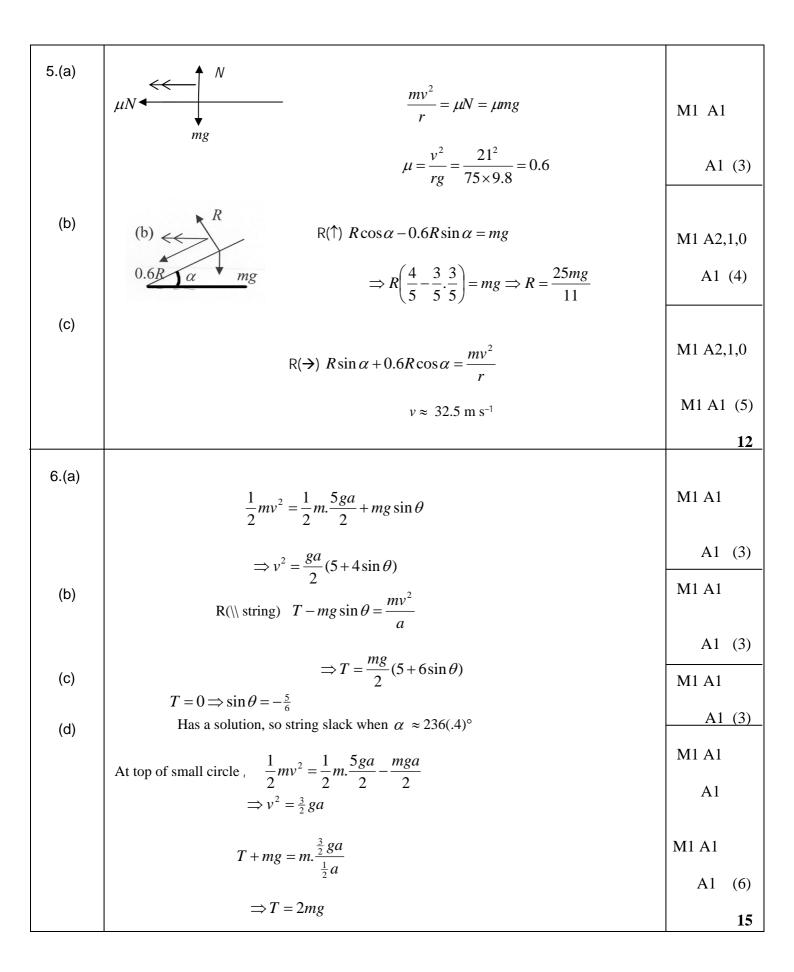
Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

General Marking Guidance

•

All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

1excel


- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

edexcel

January 2008 6679 Mechanics Mathematics Mark Scheme

Question Number	Scheme	Mai	rks
1.(a)	$\frac{\lambda \times 0.16}{0.4} = 2g$	M1 A1	
	$\Rightarrow \lambda = \underline{49 \text{ N}}$	A1	(3)
(b)	$R(\uparrow) T\cos\theta = 2g$	M1	
	$49.\frac{0.32}{0.4}.\cos\theta = 19.6$	A1	
	$\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$	A1	(3)
			6
2.	$0.1 a = \frac{16}{5x^2} \implies a = \frac{32}{x^2}$	B1	
	$v\frac{dv}{dx} = \frac{32}{x^2}$	M1	
	$\int v \mathrm{d}v = \int \frac{32}{x^2} \mathrm{d}x$	M1	
	$\frac{1}{2}v^2 = -\frac{32}{x} (+C)$	A1	
	$x = 2, v = -8 \implies 32 = -16 + C \implies C = 48$	M1 A1	
	$v = 0 \Rightarrow \frac{32}{x} = 48 \Rightarrow x = \frac{2}{3} \text{ m}$	M1 A1	8

Scheme				Marks
	Large cone	small cone	S	
Vol.	$\frac{1}{3}\pi(2r)^2(2h)$	$\frac{1}{3}\pi r^2h$	$\frac{7}{3}\pi r^2h$	B1
C of M	$\frac{1}{2}h$	$\frac{5}{4}h$	\overline{x}	B1 B1
	$\frac{8}{3}\pi r^2h.\frac{1}{2}h$	$-\frac{1}{3}\pi r^2h.\frac{5}{4}h =$	$\frac{7}{3}\pi r^2h$. \overline{x}	M1
		$\rightarrow \overline{x} = \frac{11}{28}$	h	A1 (5)
	$\tan heta$	$= \frac{2r}{\bar{x}} = \frac{2r}{\frac{11}{28}h} = \frac{2}{\frac{11}{14}}$	$\frac{r}{r} = \frac{28}{11}$	M1 A1
	$\theta \approx 68.$.6°		A1 (3)
$\frac{1}{2}$	$mV^2 + \frac{1}{2} \cdot \frac{2mg}{a} \cdot \frac{a^2}{16}$	$+mg.\frac{1}{2}a.\frac{1}{2}=\frac{1}{2}.\frac{2}{2}$	$\frac{mg}{a} \cdot \frac{9a^2}{16}$	M1 A3,2,1,0
		$\Rightarrow V = \sqrt{\frac{ga}{2}}$		M1 A1 (6)
	$\frac{1}{2}mw^2 = \frac{1}{2}$	$\cdot \frac{2mg}{a} \cdot \frac{9a^2}{16} - mg \cdot \frac{3a^2}{4}$	$\frac{a}{4} \cdot \frac{1}{2}$	M1 A2,1,0
	$\Rightarrow w = \sqrt{\frac{3}{2}}$	$\frac{ag}{8}$		A1 (4) 10
	C of M	Vol. $\frac{1}{3}\pi(2r)^2(2h)$ C of M $\frac{1}{2}h$ $\frac{8}{3}\pi r^2h.\frac{1}{2}h$ $\tan \theta$ $\theta \approx 68$ $\frac{1}{2}mV^2 + \frac{1}{2}.\frac{2mg}{a}.\frac{a^2}{16}$ $\frac{1}{2}mw^2 = \frac{1}{2}$	Large cone small cone Vol. $\frac{1}{3}\pi(2r)^2(2h)$ $\frac{1}{3}\pi r^2 h$ C of M $\frac{1}{2}h$ $\frac{5}{4}h$ $\frac{8}{3}\pi r^2 h \cdot \frac{1}{2}h - \frac{1}{3}\pi r^2 h \cdot \frac{5}{4}h =$ $\rightarrow \overline{x} = \frac{11}{28}$ $\tan \theta = \frac{2r}{\overline{x}} = \frac{2r}{\frac{11}{28}h} = \frac{2}{\frac{11}{14}}$ $\theta \approx 68.6^\circ$ $\frac{1}{2}mV^2 + \frac{1}{2} \cdot \frac{2mg}{a} \cdot \frac{a^2}{16} + mg \cdot \frac{1}{2}a \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{2\pi}{a}$ $\Rightarrow V = \sqrt{\frac{ga}{2}}$	Large cone small cone S Vol. $\frac{1}{3}\pi(2r)^2(2h)$ $\frac{1}{3}\pi^2h$ $\frac{7}{3}\pi^2h$ C of M $\frac{1}{2}h$ $\frac{5}{4}h$ \overline{x} $\frac{8}{3}\pi^2h.\frac{1}{2}h - \frac{1}{3}\pi^2h.\frac{5}{4}h = \frac{7}{3}\pi^2h.\overline{x}$ $\rightarrow \overline{x} = \frac{11}{28}h$ tan $\theta = \frac{2r}{\overline{x}} = \frac{2r}{\frac{11}{28}h} = \frac{2r}{\frac{11}{28}h} = \frac{28}{11}$ $\theta \approx 68.6^{\circ}$ $\frac{1}{2}mV^2 + \frac{1}{2}.\frac{2mg}{a}.\frac{a^2}{16} + mg.\frac{1}{2}a.\frac{1}{2} = \frac{1}{2}.\frac{2mg}{a}.\frac{9a^2}{16}$ $\Rightarrow V = \sqrt{\frac{ga}{2}}$ $\frac{1}{2}mw^2 = \frac{1}{2}.\frac{2mg}{a}.\frac{9a^2}{16} - mg.\frac{3a}{4}.\frac{1}{2}$

7.(a)	(Measuring x from E) $2\ddot{x} = 2g - 98(x+0.2)$	M1 A1 A1
	$\ddot{x} = -49x$; SHM period $\frac{2\pi}{7}$	M1 A1 (5)
(b)	Max. acceleration = 49 x max. $x = 49 \times 0.4 = 19.6 \text{ m s}^{-1}$	B1 (1)
(c)	String slack when $x = -0.2$: $v^2 = 49(0.4^2 - 0.2^2)$	M1 A1
	$\Rightarrow v \approx 2.42 \text{ m s}^{-1}$	A1 (3)
(d)	$x = a \cos \omega t$	M1
	Goes slack when $-0.2 = 0.4 \cos 7t \implies \cos 7t = -\frac{1}{2}$	M1 A1
	$t = \frac{2\pi}{21} \approx 0.299 \mathrm{s}$	A1
	Time when string is slack = $\frac{2 \times 2.42}{g} \approx 0.494$ s	M1 A1
	Total time = $2 \ge 0.299 + 0.494 \approx 1.09 \le 0.0033$	A1 (7)
		16