Mark Scheme (Pre-Standardisation) J anuary 2008

GCE

GCE Mathematics (6678/01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- \quad Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

J anuary 2008
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
1.	(a) \quad KE lost is $\frac{1}{2} \times 2.5 \times 8^{2}=80(\mathrm{~J})$ (b) \quad Work energy \quad80 $=R \times 20$ R $=4$$\quad$ ft their (a) Alternative to (b) $\begin{array}{cc} 0^{2}=8^{2}-2 \times a \times 20 \Rightarrow a=(-) 1.6 \\ \text { N2L } \quad R & =2.5 \times 1.6 \\ & =4 \end{array}$	M1 A1 (2) M1 A1 ft A1 (3) $[5]$ M1 A1ft A1 (3)
2.	(a) $\dot{\mathbf{p}}=(6 t-6) \mathbf{i}+\left(9 t^{2}-4\right) \mathbf{j} \quad\left(\mathrm{ms}^{-1}\right)$ (b) $\begin{aligned} 9 t^{2}-4 & =0 \\ t & =\frac{2}{3} \end{aligned}$ (c) $\begin{gathered} t=1 \Rightarrow \dot{\mathbf{p}}=5 \mathbf{j} \\ 2 \mathbf{i}-6 \mathbf{j}=0.5(\mathbf{v}-5 \mathbf{j}) \\ \mathbf{v}=4 \mathbf{i}-7 \mathbf{j} \quad\left(\mathrm{~ms}^{-1}\right) \end{gathered}$	M1 A1 M1 M1 A1 (3) B1 M1 M1 A1 (4) $[9]$

Question Number	Scheme	Marks
3.	(a) $20000=16 F \quad(F=1250)$ Z $\quad F=550+1000 \times 9.8 \sin \theta \quad \mathrm{ft}$ their F $\text { Leading to } \sin \theta=\frac{1}{14}$ (b) N2L Z $\begin{aligned} & 550+1000 \times 9.8 \times \frac{1}{14}=1000 a \\ &(a=(-) 1.25) \\ & v^{2}=u^{2}+2 a s \Rightarrow 16^{2}=2 \times 1.25 \times y \\ & y \approx 102 \end{aligned}$ accept 100 Alternative to (b) Work-Energy $\begin{align*} \frac{1}{2} \times 1000 \times 16^{2}-1000 \times 9.8 \times \frac{1}{14} y & =550 y \\ y \approx 102 & \text { accept } 100 \tag{4} \end{align*}$	M1 A1 M1 A1ft A1 (5) M1 A1 M1 (4) [9] M1 A1 M1 A1
4.	(a) Triangle Circle S Mass ratio 126 9π $126-9 \pi$ \bar{x} 7 5 \bar{x} \bar{y} 4 5 \bar{y} all four $126 \times 7=9 \pi \times 5+(126-9 \pi) \times \bar{X} \quad$ ft their mass ratios $\bar{x} \approx 7.58$ awrt 7.6 $126 \times 4=9 \pi \times 5+(126-9 \pi) \times \bar{y}$ ft their mass ratios $\bar{y} \approx 3.71$ awrt 3.7 (b) $\begin{array}{cr} \tan \theta=\frac{\bar{y}}{21-\bar{x}} & \text { ft their } \bar{x}, \bar{y} \\ \theta \approx 15^{\circ} & \text { awrt } 15^{\circ} \end{array}$	B1 B1ft B1 M1 A1ft A1 M1 A1ft A1 (9) M1 A1ft A1 (3) [12]

Question Number	Scheme	Marks
5.	(a) $\mathrm{M}(A)$ $\begin{gathered} N \times 4 a \cos 30^{\circ}=3 m g \times a \sin 30^{\circ}+m g \times 2 a \sin 30^{\circ} \\ N=\frac{5}{4} m g \tan 30^{\circ}=\frac{5}{4 \sqrt{ } 3} m g \\ \uparrow \quad R=4 m g, \quad \rightarrow \quad F_{r}=N \end{gathered}$ Using $F_{r}=\mu R$ $\begin{aligned} \frac{5}{4 \sqrt{ } 3} m g & =\mu R \\ \mu & =\frac{5}{16 \sqrt{ } 3} \end{aligned}$ awrt 0.18	M1 A2(1,0) M1 A1 B1, B1 B1 M1 A1 (10) [10]
6.	(a) $\begin{array}{ll} & \rightarrow \quad 30=2 u t \\ \uparrow & -47.5=5 u t-4.9 t^{2} \\ -47.5=75-4.9 t^{2} \\ t^{2} & =\frac{75+47.5}{4.9}(=25) \\ t=5 & * \end{array}$ eliminating u (b) $30=2 u t \Rightarrow 30=10 u \quad \Rightarrow u=3$ (c) $\begin{array}{cc} \uparrow & \dot{y}=5 u-9.8 t=-34 \\ \rightarrow & \dot{x}=2 u=6 \\ & v^{2}=6^{2}+(-34)^{2} \\ & v \approx 34.5\left(\mathrm{~ms}^{-1}\right) \end{array}$ accept 35 Alternative to (c) $\begin{gathered} v_{A}^{2}=6^{2}+15^{2}=261 \\ \frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2}=m \times g \times 47.5 \\ v_{B}^{2}=261+2 \times 9.8 \times 47.5(=1192) \\ v_{B} \approx 34.5\left(\mathrm{~ms}^{-1}\right) \end{gathered}$	B1 M1 A1 M1 M1 A1 (6) M1 A1 (2) M1 A1 A1 M1 A1 (5) [13] M1 A1 M1 A1 A1 (5)

