

# Mark Scheme (Final) January 2008

GCE

GCE Mathematics (6663/01)



# edexcel

# January 2008 6663 Core Mathematics C1 Mark Scheme

| Question number | Scheme                                                                                                                                            | Marks |                 |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
| 1.              | $3x^2 \rightarrow kx^3$ or $4x^5 \rightarrow kx^6$ or $-7 \rightarrow kx$ (k a non-zero constant)                                                 | M1    |                 |
|                 | $\frac{3x^3}{3}$ or $\frac{4x^6}{6}$ (Either of these, simplified or unsimplified)                                                                | A1    |                 |
|                 | $x^{3} + \frac{2x^{6}}{3} - 7x$ or equivalent unsimplified, such as $\frac{3x^{3}}{3} + \frac{4x^{6}}{6} - 7x^{1}$                                | A1    |                 |
|                 | + $C$ (or any other constant, e.g. + $K$ )                                                                                                        | B1    | (4)<br><b>4</b> |
|                 | M: Given for increasing by one the power of $x$ in one of the three terms.                                                                        |       |                 |
|                 | A marks: 'Ignore subsequent working' after a correct unsimplified version of a term is seen.                                                      |       |                 |
|                 | B: Allow the mark (independently) for an integration constant appearing at any stage (even if it appears, then disappears from the final answer). |       |                 |
|                 | This B mark can be allowed even when no other marks are scored.                                                                                   |       |                 |
|                 |                                                                                                                                                   |       |                 |
|                 |                                                                                                                                                   |       |                 |
|                 |                                                                                                                                                   |       |                 |
|                 |                                                                                                                                                   |       |                 |
|                 |                                                                                                                                                   |       |                 |
|                 |                                                                                                                                                   |       |                 |
|                 |                                                                                                                                                   |       |                 |
|                 |                                                                                                                                                   |       |                 |
|                 |                                                                                                                                                   |       |                 |

| Question<br>number | Scheme                                                                                                                                                            | Ma | urks |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|
| 2.                 | (a) 2                                                                                                                                                             | B1 | (1)  |
|                    | (b) $x^9$ seen, or $(answer to (a))^3$ seen, or $(2x^3)^3$ seen.                                                                                                  | M1 |      |
|                    | $8x^{9}$                                                                                                                                                          | A1 | (2)  |
|                    |                                                                                                                                                                   |    | 3    |
|                    | (b) M: Look for $x^9$ first if seen, this is M1.                                                                                                                  |    |      |
|                    | If not seen, look for $(answer to (a))^3$ , e.g. $2^3 \dots$ this would score M1 even if it does not subsequently become 8. (Similarly for other answers to (a)). |    |      |
|                    | In $(2x^3)^3$ , the $2^3$ is implied, so this scores the M mark.                                                                                                  |    |      |
|                    | Negative answers:                                                                                                                                                 |    |      |
|                    | (a) Allow $-2$ . Allow $\pm 2$ . Allow '2 or $-2$ '.                                                                                                              |    |      |
|                    | (b) Allow $\pm 8x^9$ . Allow $(8x^9 \text{ or } -8x^9)$ .                                                                                                         |    |      |
|                    | N.B. If part (a) is wrong, it is possible to 'restart' in part (b) and to score full marks in part (b).                                                           |    |      |
|                    |                                                                                                                                                                   |    |      |
|                    |                                                                                                                                                                   |    |      |
|                    |                                                                                                                                                                   |    |      |
|                    |                                                                                                                                                                   |    |      |
|                    |                                                                                                                                                                   |    |      |
|                    |                                                                                                                                                                   |    |      |
|                    |                                                                                                                                                                   |    |      |
|                    |                                                                                                                                                                   |    |      |
|                    |                                                                                                                                                                   |    |      |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | Marks       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|
| 3.                 | $\frac{\left(5-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)} \times \frac{\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             | M1          |
|                    | $=\frac{10-2\sqrt{3}-5\sqrt{3}+(\sqrt{3})^{2}}{} \qquad \left(=\frac{10-7\sqrt{3}}{}\right)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\left(\frac{+3}{2}\right)$                                                                                                 | M1          |
|                    | $\left(=13-7\sqrt{3}\right) \qquad \left(\text{Allow } \frac{13-7\sqrt{3}}{1}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13 ( <i>a</i> = 13)                                                                                                         | A1          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-7\sqrt{3}$ ( <i>b</i> = -7)                                                                                               | A1 (4)<br>4 |
|                    | 1 <sup>st</sup> M: Multiplying top and bottom by $(2 - \sqrt{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sqrt{3}$ ). (As shown above is sufficient).                                                                               |             |
|                    | 2 <sup>nd</sup> M: Attempt to multiply out numerator (<br>3 terms correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(5-\sqrt{3})(2-\sqrt{3})$ . Must have at least                                                                             |             |
|                    | Final answer: Although 'denominator = 1' n<br>obviously be the final answer<br>full marks. (Also M0 M1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | may be <u>implied</u> , the $13 - 7\sqrt{3}$ must (not an intermediate step), to score A1 is <u>not</u> an option).         |             |
|                    | The A marks cannot be scored unless the $1^{s}$ but this $1^{st}$ M mark <u>could</u> be implied by condenominator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>t</sup> M mark has been scored,<br>rect expansions of both numerator <u>and</u>                                        |             |
|                    | It <u>is</u> possible to score M1 M0 A1 A0 or M1 the numerator).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M0 A0 A1 (after 2 correct terms in                                                                                          |             |
|                    | Special case: If numerator is multiplied by $2^{nd}$ M can still be scored for at $10 - 2\sqrt{3} + 5\sqrt{3} - (\sqrt{3})^2$ .<br>The maximum score in the spectrum scor | $(2 + \sqrt{3})$ instead of $(2 - \sqrt{3})$ , the<br>least 3 of these terms correct:<br>ecial case is 1 mark: M0 M1 A0 A0. |             |
|                    | Answer only: Scores no marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |             |
|                    | Alternative method:<br>$5 - \sqrt{3} = (a + b\sqrt{3})(2 + \sqrt{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             |             |
|                    | $(a+b\sqrt{3})(2+\sqrt{3}) = 2a + a\sqrt{3} + 2b\sqrt{3} + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1: At least 3 terms correct.                                                                                               |             |
|                    | $-1 = a + 2b$ $a = \dots$ or $b = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1: Form and attempt to solve simultaneous equations.                                                                       |             |
|                    | a = 13,  b = -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1, A1                                                                                                                      |             |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |             |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                  | Marks  |     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| 4.                 | (a) $m = \frac{4 - (-3)}{-6 - 8}$ or $\frac{-3 - 4}{8 - (-6)}$ , $= \frac{7}{-14}$ or $\frac{-7}{14}$ $\left(= -\frac{1}{2}\right)$                                                                                                                                     | M1, A1 |     |
|                    | Equation: $y-4 = -\frac{1}{2}(x-(-6))$ or $y-(-3) = -\frac{1}{2}(x-8)$                                                                                                                                                                                                  | M1     |     |
|                    | x + 2y - 2 = 0 (or equiv. with <u>integer</u> coefficients must have '= 0')                                                                                                                                                                                             | A1     | (4) |
|                    | (e.g. $14y + 7x - 14 = 0$ and $14 - 7x - 14y = 0$ are acceptable)                                                                                                                                                                                                       |        |     |
|                    | (b) $(-6-8)^2 + (4-(-3))^2$                                                                                                                                                                                                                                             | M1     |     |
|                    | $14^2 + 7^2$ or $(-14)^2 + 7^2$ or $14^2 + (-7)^2$ (M1 A1 may be implied by 245)                                                                                                                                                                                        | A1     |     |
|                    | $AB = \sqrt{14^2 + 7^2}$ or $\sqrt{7^2(2^2 + 1^2)}$ or $\sqrt{245}$                                                                                                                                                                                                     |        |     |
|                    | $7\sqrt{5}$                                                                                                                                                                                                                                                             | Alcso  | (3) |
|                    |                                                                                                                                                                                                                                                                         |        | 7   |
|                    | (a) 1 <sup>st</sup> M: Attempt to use $m = \frac{y_2 - y_1}{x_2 - x_1}$ (may be implicit in an equation of <i>L</i> ).                                                                                                                                                  |        |     |
|                    | 2 <sup>nd</sup> M: Attempting straight line equation in any form, e.g. $y - y_1 = m(x - x_1)$ ,                                                                                                                                                                         |        |     |
|                    | $\frac{y-y_1}{x-x_1} = m$ , with any value of <i>m</i> (except 0 or $\infty$ ) and either (-6, 4) or (8, -3).                                                                                                                                                           |        |     |
|                    | N.B. It is also possible to use a different point which lies on the line, such as the midpoint of $AB$ (1, 0.5).                                                                                                                                                        |        |     |
|                    | Alternatively, the $2^{nd}$ M may be scored by using $y = mx + c$ with a numerical gradient and substituting (-6, 4) or (8, -3) to find the value of <i>c</i> .                                                                                                         |        |     |
|                    | Having coords the wrong way round, e.g. $y - (-6) = -\frac{1}{2}(x-4)$ , loses the                                                                                                                                                                                      |        |     |
|                    | $2^{nd}$ M mark <u>unless</u> a correct general formula is seen, e.g. $y - y_1 = m(x - x_1)$ .                                                                                                                                                                          |        |     |
|                    | (b) M: Attempting to use $(x_2 - x_1)^2 + (y_2 - y_1)^2$ .<br><u>Missing bracket</u> , e.g. $-14^2 + 7^2$ implies M1 if no earlier version is seen.<br>$-14^2 + 7^2$ with no further work would be M1 A0.<br>$-14^2 + 7^2$ followed by 'recovery' can score full marks. |        |     |

| Question<br>number | Scheme                                                                                                                                                                                                                     | Marks      |     |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|
| 5.                 | (a) $\left(2x^{-\frac{1}{2}} + 3x^{-1}\right)$ $p = -\frac{1}{2}, \qquad q = -1$                                                                                                                                           | B1, B1     | (2) |
|                    | (b) $\left( y = 5x - 7 + 2x^{-\frac{1}{2}} + 3x^{-1} \right)$                                                                                                                                                              |            |     |
|                    | $\left(\frac{dy}{dx}\right) = 5$ (or $5x^0$ ) (5x-7 correctly differentiated)                                                                                                                                              | B1         |     |
|                    | Attempt to differentiate either $2x^p$ with a fractional <i>p</i> , giving $kx^{p-1}$ ( $k \neq 0$ ), (the fraction <i>p</i> could be in decimal form)                                                                     |            |     |
|                    | or $3x^q$ with a negative q, giving $kx^{q-1}$ $(k \neq 0)$ .                                                                                                                                                              | M1         |     |
|                    | $\left(-\frac{1}{2} \times 2x^{-\frac{3}{2}} - 1 \times 3x^{-2} =\right) \qquad -x^{-\frac{3}{2}}, \ -3x^{-2}$                                                                                                             | A1ft, A1ft | (4) |
|                    |                                                                                                                                                                                                                            |            | 6   |
|                    | (b):                                                                                                                                                                                                                       |            |     |
|                    | N.B. It is possible to 'start again' in (b), so the <i>p</i> and <i>q</i> may be different from those seen in (a), but note that the M mark is for the attempt to differentiate $\underline{2}x^p$ or $\underline{3}x^q$ . |            |     |
|                    | However, marks for part (a) <u>cannot</u> be earned in part (b).                                                                                                                                                           |            |     |
|                    | 1 <sup>st</sup> A1ft: ft their $2x^p$ , but <i>p</i> must be a fraction and coefficient must be simplified (the fraction <i>p</i> could be in decimal form).                                                               |            |     |
|                    | $2^{nd}$ A1ft: ft their $3x^q$ , but q must be negative and coefficient must be simplified.                                                                                                                                |            |     |
|                    | 'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common                                                                                                                                     |            |     |
|                    | factors. Only a single + or - sign is allowed (e.g must be replaced by +).                                                                                                                                                 |            |     |
|                    | Having $+C$ loses the B mark.                                                                                                                                                                                              |            |     |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          | Mar | ks  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 6.                 | (a) (2, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Shape: Max in $1^{st}$ quadrant and 2 intersections on positive <i>x</i> -axis                                                           | B1  |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 and 4 labelled (in correct place) or clearly stated as coordinates                                                                     | B1  |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2, 10) labelled or clearly stated                                                                                                       | B1  | (3) |
|                    | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shape: Max in 2nd quadrant and 2 intersections on negative <i>x</i> -axis                                                                | B1  |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1 and -4 labelled (in correct place) or clearly stated as coordinates                                                                   | B1  |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (-2, 5) labelled or clearly stated                                                                                                       | B1  | (3) |
|                    | (c) $(a = ) 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | May be implicit, i.e. $f(x+2)$                                                                                                           | B1  | (1) |
|                    | Beware: The answer to part (c) may be s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | seen on the first page.                                                                                                                  |     |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                          |     | 7   |
|                    | (a) and (b): $1^{\text{st}}$ D. (Change) is a summary matrix dimension of the second seco | . 1:4:                                                                                                                                   |     |     |
|                    | <sup>1</sup> B: Snape is generous, providing the cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | attons are satisfied.                                                                                                                    |     |     |
|                    | 2 and 5 B marks are dependent upon a sk<br>$2^{nd}$ B marks: Allow (0, 1) etc. (coordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the wrong way round) if the sketch is                                                                                                    |     |     |
|                    | correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the wrong way round) <u>ii</u> the sketch is                                                                                             |     |     |
|                    | Points must be labelled correctly and be in a first quadrant is B0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | appropriate place (e.g. $(-2, 5)$ in the                                                                                                 |     |     |
|                    | (b) <u>Special case</u> :<br>If the graph is reflected in the <i>x</i> -axis (inst<br>scored. This requires shape and coordina<br>Shape: Minimum in 4 <sup>th</sup> quadrant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tead of the <i>y</i> -axis), B1 B0 B0 can be<br>tes to be <u>fully correct</u> , i.e.<br>and 2 intersections on positive <i>x</i> -axis, |     |     |
|                    | 1 and 4 labelled (in correct place) or clear $(2, -5)$ labelled or clearly stated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rly stated as coordinates,                                                                                                               |     |     |

| Question<br>number | Scheme                                                                                                                                                                                                                                            | Marks |     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 7.                 | (a) $1(p+1)$ or $p+1$                                                                                                                                                                                                                             | B1    | (1) |
|                    | (b) $((a))(p+(a))$ [(a) must be a function of <i>p</i> ]. $[(p+1)(p+p+1)]$                                                                                                                                                                        | M1    |     |
|                    | $=1+3p+2p^{2}$ (*)                                                                                                                                                                                                                                | A1cso | (2) |
|                    | (c) $1 + 3p + 2p^2 = 1$                                                                                                                                                                                                                           | M1    |     |
|                    | $p(2p+3) = 0 \qquad \qquad p = \dots$                                                                                                                                                                                                             | M1    |     |
|                    | $p = -\frac{3}{2}$ (ignore $p = 0$ , if seen, even if 'chosen' as the answer)                                                                                                                                                                     | A1    | (3) |
|                    | (d) Noting that even terms are the same.                                                                                                                                                                                                          | M1    |     |
|                    | This M mark can be implied by listing at least 4 terms, e.g. 1, $-\frac{1}{2}$ , 1, $-\frac{1}{2}$ ,                                                                                                                                              |       |     |
|                    | $x_{2008} = -\frac{1}{2}$                                                                                                                                                                                                                         | A1    | (2) |
|                    |                                                                                                                                                                                                                                                   |       | 8   |
|                    | (b) M: Valid attempt to use the given recurrence relation to find $x_3$ .<br><u>Missing brackets</u> , e.g. $p+1(p+p+1)$ Condone for the M1, then if all terms<br>in the expansion are correct, with working fully shown, M1 A1 is still allowed. |       |     |
|                    | Beware 'working back from the answer', e.g. $1+3p+2p^2 = (1+p)(1+2p)$ scores no marks unless the recurrence relation is justified.                                                                                                                |       |     |
|                    | (c) $2^{nd}$ M: Attempt to solve a quadratic equation in <i>p</i> (e.g. quadratic formula or completing the square).<br>The equation must be based on $x_3 = 1$ .                                                                                 |       |     |
|                    | <ul><li>The attempt must lead to a non-zero solution, so just stating the zero solution p = 0 is M0.</li><li>A: The A mark is dependent on <u>both</u> M marks.</li></ul>                                                                         |       |     |
|                    | (d) M: Can be implied by a correct answer for their $p$ (answer is $p + 1$ ), and can also be implied if the working is 'obscure').                                                                                                               |       |     |
|                    | Trivialising, e.g. $p = 0$ , so every term = 1, is M0.                                                                                                                                                                                            |       |     |
|                    | If the <u>additional</u> answer $x_{2008} = 1$ (from $p = 0$ ) is seen, ignore this (isw).                                                                                                                                                        |       |     |

| Question<br>number | Scheme                                                                                                                                                                                                                  | Marks                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 8.                 | (a) $x^2 + kx + (8 - k)$ (= 0) $8 - k$ need not be bracketed                                                                                                                                                            | - M1                     |
|                    | $b^2 - 4ac = k^2 - 4(8 - k)$                                                                                                                                                                                            | - M1                     |
|                    | $b^{2} - 4ac < 0 \implies k^{2} + 4k - 32 < 0$ (*)<br>(b) $(k+8)(k-4) = 0$ $k =$<br>k = -8 $k = 4$                                                                                                                      | A1cso (3)<br>M1<br>A1    |
|                    | Choosing 'inside' region (between the two k values)<br>-8 < k < 4 or $4 > k > -8$                                                                                                                                       | M1<br>A1 (4)<br><b>7</b> |
|                    | (a) $1^{st}$ M: Using the <i>k</i> from the right hand side to form 3-term quadratic in <i>x</i> ('= 0' can be implied), or                                                                                             |                          |
|                    | attempting to complete the square $\left(x+\frac{k}{2}\right)^2 - \frac{k^2}{4} + 8 - k \ (=0)$ or equiv.,                                                                                                              |                          |
|                    | using the <i>k</i> from the right hand side.<br>For either approach, <u>condone sign errors</u> .                                                                                                                       |                          |
|                    | 1 <sup>st</sup> M may be implied when candidate moves straight to the discriminant                                                                                                                                      |                          |
|                    | $2^{nd}$ M: Dependent on the $1^{st}$ M.                                                                                                                                                                                |                          |
|                    | Forming expressions in k (with no x's) by using $b^2$ and $4ac$ . (Usually                                                                                                                                              |                          |
|                    | seen as the discriminant $b^2 - 4ac$ , but separate expressions are fine,                                                                                                                                               |                          |
|                    | and also allow the use of $b^2 + 4ac$ .<br>(For 'completing the square' approach, the expression must be clearly separated from the equation in x).                                                                     |                          |
|                    | If $b^2$ and $4ac$ are used in the <u>quadratic formula</u> , they must be clearly separated from the formula to score this mark.<br>For any approach, <u>condone sign errors</u> .                                     |                          |
|                    | If the wrong statement $\sqrt{b^2 - 4ac} < 0$ is seen, maximum score is M1 M1 A0.                                                                                                                                       |                          |
|                    | <ul> <li>(b) Condone the use of x (instead of k) in part (b).</li> <li>1st M: Attempt to solve a 3-term quadratic equation in k.</li> <li>It <u>might</u> be different from the given quadratic in part (a).</li> </ul> |                          |
|                    | Ignore the use of < in solving the equation. The 1 <sup>st</sup> M1 A1 can be scored if $-8$ and 4 are achieved, even if stated as $k < -8$ , $k < 4$ .                                                                 |                          |
|                    | <u>Allow</u> the first M1 A1 to be scored in part (a).                                                                                                                                                                  |                          |
|                    | N.B. ' $k > -8$ , $k < 4$ ' scores 2 <sup>nd</sup> M1 A0                                                                                                                                                                |                          |
|                    | $k > -8$ or $k < 4$ ' scores $2^{nd}$ M1 A0                                                                                                                                                                             |                          |
|                    | $\kappa > -\delta$ and $\kappa < 4$ scores 2 M1 A1<br>k = -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3 scores 2 <sup>nd</sup> M0 A0                                                                                           |                          |
|                    | Use of $\leq$ (in the answer) loses the final mark.                                                                                                                                                                     |                          |

| Question<br>number | Scheme                                                                                                                                                              | Marks      |     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|
| 9.                 | (a) $4x \to kx^2$ or $6\sqrt{x} \to kx^{\frac{3}{2}}$ or $\frac{8}{x^2} \to kx^{-1}$ (k a non-zero constant)                                                        | M1         |     |
|                    | $f(x) = 2x^2, -4x^{\frac{3}{2}}, -8x^{-1}$ (+ C) (+ C not required)                                                                                                 | A1, A1, A1 |     |
|                    | At $x = 4$ , $y = 1$ : $1 = (2 \times 16) - \left(4 \times 4^{\frac{3}{2}}\right) - \left(8 \times 4^{-1}\right) + C$ Must be in part (a)                           | M1         |     |
|                    | <i>C</i> = 3                                                                                                                                                        | A1         | (6) |
|                    | (b) $f'(4) = 16 - (6 \times 2) + \frac{8}{16} = \frac{9}{2} (= m)$<br>(M: Attempt $f'(4)$ with the <u>given</u> $f'$ .<br><u>Must be in part (b)</u>                | M1         |     |
|                    | Gradient of normal is $-\frac{2}{9}\left(=-\frac{1}{m}\right)$ M: Attempt perp. grad. rule.                                                                         | M1         |     |
|                    | Dependent on the use of their $f'(x)$                                                                                                                               |            |     |
|                    | Eqn. of normal: $y-1 = -\frac{2}{9}(x-4)$ (or any equiv. form, e.g. $\frac{y-1}{x-4} = -\frac{2}{9}$ )                                                              | M1 A1      | (4) |
|                    | Typical answers for A1: $\left(y = -\frac{2}{9}x + \frac{17}{9}\right)\left(2x + 9y - 17 = 0\right)\left(y = -0.\dot{2}x + 1.\dot{8}\right)$                        |            |     |
|                    | Final answer: gradient $-\frac{1}{9/2}$ or $-\frac{1}{4.5}$ is A0 (but all M marks are available).                                                                  |            |     |
|                    |                                                                                                                                                                     |            | 10  |
|                    | (a) The first 3 A marks are awarded in the order shown, and the terms must be simplified.                                                                           |            |     |
|                    | 'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common                                                                              |            |     |
|                    | factors. Only a single $+$ or $-$ sign is allowed (e.g. $+$ $-$ must be replaced by $-$ ).                                                                          |            |     |
|                    | $2^{nd}$ M: Using $x = 4$ and $y = 1$ (not $y = 0$ ) to form an eqn in C. (No C is M0)                                                                              |            |     |
|                    | (b) $2^{nd}$ M: Dependent upon use of their $f'(x)$ .                                                                                                               |            |     |
|                    | $3^{rd}$ M: eqn. of a straight line through (4, 1) with any gradient except 0 or $\infty$ .                                                                         |            |     |
|                    | <u>Alternative for <math>3^{rd}</math> M:</u> Using (4, 1) in $y = mx + c$ to <u>find a value</u> of <i>c</i> , but an equation (general or specific) must be seen. |            |     |
|                    | Having coords the <u>wrong way round</u> , e.g. $y-4 = -\frac{2}{9}(x-1)$ , loses the 3 <sup>rd</sup> M                                                             |            |     |
|                    | mark <u>unless</u> a correct general formula is seen, e.g. $y - y_1 = m(x - x_1)$ .                                                                                 |            |     |
|                    | N.B. The A mark is scored for <u>any</u> form of the correct equation be prepared to apply isw if necessary.                                                        |            |     |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marks                                                                                |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 10.                | (a)<br>(a)<br>(b) $y = (x+3)(x^2 - 2x+1)$<br>$= x^3 + x^2 - 5x + 3$ (k = 3)<br>(c) $\frac{dy}{dx} = 3x^2 + 2x - 5$<br>$3x^2 + 2x - 5 = 3$ or $3x^2 + 2x - 8 = 0$<br>(3x-4)(x+2) = 0 $x =x = \frac{4}{3} (or exact equiv.) , x = -2Shape // (drawn anywhere)Minimum at (1, 0)(perhaps labelled 1 on x-axis)(-3,0) (or - 3 shown on -ve x-axis)(0,3) (or 3 shown on +ve y-axis)N.B. The max. can be anywhere.(Marks can be awarded ifthis is seen in part (a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1<br>B1<br>B1<br>B1 (4)<br>M1<br>A1cso (2)<br>M1 A1<br>M1<br>M1<br>A1, A1 (6)<br>12 |
|                    | <ul> <li>(a) The individual marks are independent, <u>but</u> the 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> B's are dependent upon a sketch having been attempted.</li> <li>B marks for coordinates: Allow (0, 1), etc. (coordinates the wrong way round) <u>if</u> marked in the correct place on the sketch.</li> <li>(b) M: Attempt to multiply out (x-1)<sup>2</sup> and write as a product with (x+3), or attempt to multiply out (x+3)(x-1) and write as a product with (x-1), or attempt to expand (x+3)(x-1)(x-1) directly (at least 7 terms). The (x-1)<sup>2</sup> or (x+3)(x-1) expansion must have 3 (or 4) terms, so should not, for example, be just x<sup>2</sup> +1.</li> <li>A: It is not necessary to state explicitly 'k = 3'. Condone missing brackets if the intention seems clear and a fully correct expansion is seen.</li> <li>(c) 1<sup>st</sup> M: Attempt to differentiate (correct power of x in at least one term). 2<sup>nd</sup> M: Setting their derivative equal to 3.</li> <li>3<sup>rd</sup> M: Attempt to solve a 3-term quadratic based on their derivative. The equation <u>could</u> come from dy/dx = 0.</li> <li>N.B. After an incorrect k value in (b), full marks are still possible in (c).</li> </ul> |                                                                                      |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Marks |          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|----------|
| 11.                | (a) $u_{25} = a + 24d = 30 + 24 \times (-1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1   |       |          |
|                    | = -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1   |       | (2)      |
|                    | (b) $a + (n-1)d = 30 - 1.5(r-1) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1   |       |          |
|                    | <i>r</i> = 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1   |       | (2)      |
|                    | (c) $S_{20} = \frac{20}{2} \{ 60 + 19(-1.5) \}$ or $S_{21} = \frac{21}{2} \{ 60 + 20(-1.5) \}$ or $S_{21} = \frac{21}{2} \{ 30 + 0 \}$                                                                                                                                                                                                                                                                                                                                                                                                          | M1 . | A1ft  |          |
|                    | = 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | A1    | (3)<br>7 |
|                    | (a) M: Substitution of $a = 30$ and $d = \pm 1.5$ into $(a + 24d)$ .<br>Use of $a + 25d$ (or any other variations on 24) scores M0.                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |          |
|                    | (b) M: Attempting to use the term formula, equated to 0, to form an equation in $r$ (with no other unknowns). Allow this to be called $n$ instead of $r$ .<br>Here, being 'one off' (e.g. equivalent to $a + nd$ ), scores M1.                                                                                                                                                                                                                                                                                                                  |      |       |          |
|                    | (c) M: Attempting to use the correct sum formula to obtain $S_{20}$ , $S_{21}$ , or, with                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |       |          |
|                    | their r from part (b), $S_{r-1}$ or $S_r$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |       |          |
|                    | 1 <sup>st</sup> A(ft): A correct numerical expression for $S_{20}$ , $S_{21}$ , or, with their r from                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |          |
|                    | part (b), $S_{r-1}$ or $S_r$ but the ft is dependent on an <u>integer</u> value of r.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |          |
|                    | Methods such as calculus to find a maximum only begin to score marks <u>after</u> establishing a value of $r$ at which the maximum sum occurs.<br>This value of $r$ can be used for the M1 A1ft, but must be a positive integer to score A marks, so evaluation with, say, $n = 20.5$ would score M1 A0 A0.                                                                                                                                                                                                                                     |      |       |          |
|                    | <ul> <li><u>'Listing' and other methods</u></li> <li>(a) M: Listing terms (found by a correct method), and picking the <u>25<sup>th</sup></u> term.<br/>(There may be numerical slips).</li> </ul>                                                                                                                                                                                                                                                                                                                                              |      |       |          |
|                    | <ul><li>(b) M: Listing terms (found by a correct method), until the zero term is seen.<br/>(There may be numerical slips).</li><li>'Trial and error' approaches (or where working is unclear or non-existent) score M1 A1 for 21, M1 A0 for 20 or 22, and M0 A0 otherwise.</li></ul>                                                                                                                                                                                                                                                            |      |       |          |
|                    | (c) M: Listing sums, or listing and adding terms (found by a correct method), at least as far as the 20 <sup>th</sup> term. (There may be numerical slips).<br>A2 (scored as A1 A1) for 315 (clearly selected as the answer).<br>'Trial and error' approaches essentially follow the main scheme, beginning to score marks when trying $S_{20}$ , $S_{21}$ , or, with their <i>r</i> from part (b), $S_{r-1}$ or $S_r$ .<br>If no working (or no legitimate working) is seen, but the answer 315 is given, allow one mark (scored as M1 A0 A0). |      |       |          |
|                    | <u>For reference</u> :<br>Sums: 30, 58.5, 85.5, 111, 135, 157.5, 178.5, 198, 216, 232.5, 247.5, 261, 273, 283.5, 292.5, 300, 306, 310.5, 313.5, 315,                                                                                                                                                                                                                                                                                                                                                                                            |      |       |          |

#### **GENERAL PRINCIPLES FOR C1 MARKING**

### Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$ , where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$ , where |pq| = |c| and |mn| = |a|, leading to  $x = \dots$ 

#### 2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

#### 3. <u>Completing the square</u>

Solving  $x^2 + bx + c = 0$ :  $(x \pm p)^2 \pm q \pm c$ ,  $p \neq 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

#### Method marks for differentiation and integration:

## 1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

#### 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

#### Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values. There must be some correct substitution.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

#### Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

#### Answers without working

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

#### **Misreads**

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first 2 A (or B)</u> marks which <u>would have been lost by</u> <u>following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.