Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Mechanics M4 (6680)

J une 2007
6680 Mechanics M4

Mark Scheme

5. (a)
a) \quad M1 Conservation of momentum along the line of centres. Condone sign errors A1 equation correct

M1 Impact law along the line of centres. e must be used correctly, but condone sign errors.
A1 equation correct. The signs need to be consistent between the two equations
M1 Solve the simultaneous equations for their v_{1} and v_{2}.
A1 i components correct - independent mark
A1 $\mathbf{v}_{\mathrm{A}} \& \mathbf{v}_{\mathrm{B}}$ correct
b) M1 Impulse = change in momentum for one sphere. Condone order of subtraction.

A1 Magnitude correct.
c) M1 Any complete method to find the trig ratio of a relevant angle.

A1 $\cos \theta=\frac{4}{5}, \tan \frac{\theta}{2}=\frac{1}{3}$,
Or M1 find angle of approach to the line of centres and angle after collision.
A1 values correct. (both $71.56 \ldots .$.)
M1 solve for
A1 37^{0} (Q specifies nearest degree)
Special case: candidates who act as if the line of centres is in the direction of \mathbf{i} :
CLM $u+2 v=8$
NIL $v-u=2$
$u=4 / 3, v=10 / 3$
$4 / 3 \mathrm{i}+\mathrm{j} ; 10 / 3 \mathrm{i}-\mathrm{j}$
Impulse $2 \mathrm{~m}-4 / 3 \mathrm{~m}=2 / 3 \mathrm{~m}$
$\frac{10+1}{\sqrt{10} \sqrt{\frac{109}{9}}}=\cos \theta \quad \ldots 1.70^{\circ}$
Work is equivalent, so treat as a MR:
M1A0M1A0M1A1A1 M1A1 M1A1M1A1

6 (a)		M1 A1 B1 (3)
(b)	$0.1 g-T=0.1 \ddot{y}$	$\mathrm{M}^{*} 1$
	$\mathrm{R}()_{0.1 g}-\frac{2.45 x}{0.5}=0.1 \ddot{y}$	M1
	$\begin{aligned} & 0.98-4.9(0.2+y-2 \sin 2 t)=0.1 \ddot{y} \\ & (-4.9 y+9.8 \sin 2 t=0.1 \ddot{y}) \end{aligned}$	DM* 1 A1
	$\frac{d^{2} y}{d t^{2}}+49 y=98 \sin 2 t^{*}$	A1 cso (5)
(c)	CF is $y=A \cos 7 t+B \sin 7 t$	M1
	Hence GS is $y=A \cos 7 t+B \sin 7 t+\frac{98}{45} \sin 2 t$	A1
	$\mathrm{t}=0, y=\mathrm{o}: \quad 0=\mathrm{A} \quad \text { so }, \quad y=B \sin 7 t+\frac{98}{45} \sin 2 t$	B1
	$\dot{y}=7 B \cos 7 t+\frac{196}{45} \cos 2 t$	M1
	$\begin{aligned} & \mathrm{t}=0, \dot{y}=0: 0=7 B+\frac{196}{45} \\ & . y=\frac{14}{45}(7 \sin 2 t-2 \sin 7 t) \end{aligned} \quad . B=-\frac{28}{45}$	A1 (5)
(d)	$\dot{y}=\frac{14}{45}(14 \cos 2 t-14 \cos 7 t)$	B1
	$\dot{y}=0 \quad \cos 2 t=\cos 7 t$	M1
	. $7 t=2 k \pi \pm 2 t$	M1
	$\begin{aligned} & k=1 \quad .9 t=2 \quad(\text { or } 5 t=2 . \\ & t=\frac{2 \pi}{9^{\cdot}} \text { accept } 0.698 \mathrm{~s}, 0.70 \mathrm{~s} . \end{aligned}$	A1 (4)

a)	M1 Hooke's law to find extension at equilibrium A1 cao B1 Q specifies reference to a diagram. Correct reasoning leading to given answer.
b)	M1 Use of $\mathrm{F}=\mathrm{ma}$. Weight, tension and acceleration. Condone sign errors. M1 Substitute for tension in terms of x M1 Use given result to substitute for x in terms of y A1 Correct unsimplified equation A1 Rearrange to given form cso.
c)	M1 Correct form for CF A1 GS for y correct B1 Deduce coefficient of $\cos .=0$ M1 Differentiate their y and substitue $t=0, \dot{y}=0$ A1 y in terms of t. Any exact equivalent.
d)	B1 \dot{y} correct M1 set $\dot{y}=0$ M1 solve for general solution for $t: 7 t=2 k \pi \pm 2 t$ or: $\sin \frac{9 t}{2} \times \sin \frac{5 t}{2}=0 \Rightarrow \sin \frac{9 t}{2}=0$ or $\sin \frac{5 t}{2}=0$ A1 Select smallest value

