

## Mark Scheme (Results) Summer 2007

**GCE** 

**GCE Mathematics** 

Core Mathematics C4 (6666)



## June 2007 6666 Core Mathematics C4 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                |                                                                                                                                                                                               | Marks   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1. (a)             | ** represents a constant $f(x) = (3+2x)^{-3} = \underline{(3)}^{-3} \left(1 + \frac{2x}{3}\right)^{-3} = \underline{\frac{1}{27}} \left(1 + \frac{2x}{3}\right)^{-3}$ | Takes 3 outside the bracket to give any of $(3)^{-3}$ or $\frac{1}{27}$ .<br>See note below.                                                                                                  | B1      |
|                    | $= \frac{1}{27} \left\{ \frac{1 + (-3)(**x); + \frac{(-3)(-4)}{2!}(**x)^2 + \frac{(-3)(-4)(-5)}{3!}(**x)^3 + \dots}{3!} \right\}$ with ** \( \neq 1                   | Expands $(1 + **x)^{-3}$ to give a simplified or an unsimplified $1 + (-3)(**x)$ ;  A correct simplified or an unsimplified $\{\underline{\dots}\}$ expansion with candidate's followed thro' | M1;     |
|                    | $=\frac{1}{27}\left\{1+(-3)(\frac{2x}{3})+\frac{(-3)(-4)}{2!}(\frac{2x}{3})^2+\frac{(-3)(-4)(-5)}{3!}(\frac{2x}{3})^3+\ldots\right\}$                                 | (* * x)                                                                                                                                                                                       |         |
|                    | $= \frac{1}{27} \left\{ 1 - 2x + \frac{8x^2}{3} - \frac{80}{27}x^3 + \dots \right\}$                                                                                  |                                                                                                                                                                                               |         |
|                    | $=\frac{1}{27}-\frac{2x}{27};+\frac{8x^2}{81}-\frac{80x^3}{729}+$                                                                                                     | Anything that cancels to $\frac{1}{27} - \frac{2x}{27}$ ; Simplified $\frac{8x^2}{81} - \frac{80x^3}{729}$                                                                                    | A1;     |
|                    |                                                                                                                                                                       |                                                                                                                                                                                               | 5 marks |

Note: You would award: B1M1A0 for

$$= \frac{_1}{^{27}} \Biggl\{ \underbrace{1 + (-3)(\frac{_{2x}}{^3}) + \frac{(-3)(-4)}{2!}(2x)^2 + \frac{(-3)(-4)(-5)}{3!}(2x)^3 + ...} \Biggr\}$$

because \*\* is not consistent.

Special Case: If you see the constant  $\frac{1}{27}$  in a candidate's final binomial expression, then you can award B1



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks         |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Aliter 1. Way 2    | $f(x) = (3 + 2x)^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| way 2              | $= \begin{cases} (3)^{-3} + (-3)(3)^{-4}(**x); + \frac{(-3)(-4)}{2!}(3)^{-5}(**x)^2 \\ + \frac{(-3)(-4)(-5)}{3!}(3)^{-6}(**x)^3 + \dots \end{cases}$ Expands $(3 + 2x)^{-3}$ to give an un-simplified or simplified or sim | B1 M1 A1√     |
|                    | $= \begin{cases} (3)^{-3} + (-3)(3)^{-4}(2x); + \frac{(-3)(-4)}{2!}(3)^{-5}(2x)^{2} \\ + \frac{(-3)(-4)(-5)}{3!}(3)^{-6}(2x)^{3} + \dots \end{cases}$ $= \begin{cases} \frac{1}{27} + (-3)(\frac{1}{81})(2x); + (6)(\frac{1}{243})(4x^{2}) \\ + (-10)(\frac{1}{729})(8x^{3}) + \dots \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|                    | $= \frac{1}{27} - \frac{2x}{27}; + \frac{8x^2}{81} - \frac{80x^3}{729} + \dots$ Anything that cancels to $\frac{1}{27} - \frac{2x}{27};$ Simplified $\frac{8x^2}{81} - \frac{80x^3}{729}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1;<br>A1 [5] |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 marks       |

Attempts using Maclaurin expansions need to be escalated up to your team leader.

If you feel the mark scheme does not apply fairly to a candidate please escalate the response up to your team leader.

Special Case: If you see the constant  $\frac{1}{27}$  in a candidate's final binomial expression, then you can award B1

| Question | Scheme                                                                                                                                                                                                        | Marks    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Number   |                                                                                                                                                                                                               |          |
| 2.       | $\int_{0}^{1} \frac{2^{x}}{(2^{x}+1)^{2}} dx, \text{ with substitution } u=2^{x}$                                                                                                                             |          |
|          | $\frac{du}{dx} = 2^{x}.\ln 2  \Rightarrow \frac{dx}{du} = \frac{1}{2^{x}.\ln 2}$ $\frac{du}{dx} = 2^{x}.\ln 2 \text{ or } \frac{du}{dx} = u.\ln 2$ $\text{or } \left(\frac{1}{u}\right)\frac{du}{dx} = \ln 2$ | B1       |
|          | $\int \frac{2^{x}}{(2^{x}+1)^{2}} dx = \left(\frac{1}{\ln 2}\right) \int \frac{1}{(u+1)^{2}} du$ $k \int \frac{1}{(u+1)^{2}} du$ where $k$ is constant                                                        | M1*      |
|          | $= \left(\frac{1}{\ln 2}\right) \left(\frac{-1}{(u+1)}\right) + c$ $(u+1)^{-2} \to a(u+1)^{-1}$ $(u+1)^{-2} \to -1.(u+1)^{-1}$                                                                                | M1<br>A1 |
|          | change limits: when $x = 0$ & $x = 1$ then $u = 1$ & $u = 2$                                                                                                                                                  |          |
|          | $\int_{0}^{1} \frac{2^{x}}{(2^{x}+1)^{2}} dx = \frac{1}{\ln 2} \left[ \frac{-1}{(u+1)} \right]_{1}^{2}$                                                                                                       |          |
|          | $= \frac{1}{\ln 2} \left[ \left( -\frac{1}{3} \right) - \left( -\frac{1}{2} \right) \right]$ Correct use of limits $u = 1$ and $u = 2$                                                                        | depM1*   |
|          | $= \frac{1}{6 \ln 2} \text{ or } \frac{\frac{1}{6 \ln 2} \text{ or } \frac{1}{\ln 4} - \frac{1}{\ln 8} \text{ or } \frac{1}{2 \ln 2} - \frac{1}{3 \ln 2}}{\frac{1}{2 \ln 2} - \frac{1}{3 \ln 2}}$             | A1 aef   |
|          | Alternatively candidate can revert back to x                                                                                                                                                                  | [6]      |
|          | $\int_{0}^{1} \frac{2^{x}}{(2^{x}+1)^{2}} dx = \frac{1}{\ln 2} \left[ \frac{-1}{(2^{x}+1)} \right]_{0}^{1}$                                                                                                   |          |
|          | $= \frac{1}{\ln 2} \left[ \left( -\frac{1}{3} \right) - \left( -\frac{1}{2} \right) \right]$ Correct use of limits $x = 0$ and $x = 1$                                                                        | depM1*   |
|          | $=\frac{1}{\underline{6\ln 2}} \text{ or } \frac{\frac{1}{\ln 4} - \frac{1}{\ln 8} \text{ or } \frac{1}{\underline{2\ln 2}} - \frac{1}{\underline{3\ln 2}}}{\underline{6\ln 2}}$                              | A1 aef   |
|          | Exact value only!                                                                                                                                                                                             | 6 marks  |

If you see this **integration** applied anywhere in a candidate's working then you can award M1, A1

There are other acceptable answers for A1, eg:  $\frac{1}{2\ln 8}$  or  $\frac{1}{\ln 64}$ 

NB: Use your calculator to check eg. 0.240449...



| Question<br>Number | Scheme                                                                                                                                                                          | Marks    | S   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| 3. (a)             | $\begin{cases} u = x & \Rightarrow \frac{du}{dx} = 1 \\ \frac{dv}{dx} = \cos 2x \Rightarrow v = \frac{1}{2}\sin 2x \end{cases}$                                                 |          |     |
|                    | (see note below)                                                                                                                                                                |          |     |
|                    | Int = $\int x \cos 2x  dx = \frac{1}{2} x \sin 2x - \int \frac{1}{2} \sin 2x \cdot 1  dx$ Use of 'integration by parts' formula in the correct direction. Correct expression.   | M1<br>A1 |     |
|                    |                                                                                                                                                                                 | AI       |     |
|                    | $\sin 2x \rightarrow -\frac{1}{2}\cos 2x$ $= \frac{1}{2}x\sin 2x - \frac{1}{2}\left(-\frac{1}{2}\cos 2x\right) + C \qquad \text{or } \sin kx \rightarrow -\frac{1}{k}\cos kx$   | dM1      |     |
|                    | with $k \neq 1$ , $k > 0$                                                                                                                                                       |          |     |
|                    | $= \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + C$ Correct expression with +c                                                                                                     | A1       | [4] |
| (b)                | $\int x \cos^2 x  dx = \int x \left(\frac{\cos 2x + 1}{2}\right) dx$ Substitutes correctly for $\cos^2 x$ in the given integral                                                 | M1       |     |
|                    | $= \frac{1}{2} \int x \cos 2x  dx + \frac{1}{2} \int x  dx$                                                                                                                     |          |     |
|                    | $= \frac{1}{2} \left( \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x \right); + \frac{1}{2} \int x dx$ $\frac{1}{2} (\text{their answer to (a)});$ or <u>underlined expression</u> | A1;√     |     |
|                    | $= \frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x + \frac{1}{4}x^2 \ (+c)$ Completely correct expression with/without +c                                                              | A1       | [2] |
|                    |                                                                                                                                                                                 |          | [3] |
|                    |                                                                                                                                                                                 | 7 mark   | KS  |

Notes:

| (b) | Int = $\int x \cos 2x  dx = \frac{1}{2} x \sin 2x \pm \int \frac{1}{2} \sin 2x \cdot 1  dx$                                  | This is acceptable for M1      | M1 |
|-----|------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----|
|     | $\begin{cases} u = x & \Rightarrow \frac{du}{dx} = 1 \\ \frac{dv}{dx} = \cos 2x \Rightarrow v = \lambda \sin 2x \end{cases}$ |                                |    |
|     | $Int = \int x \cos 2x  dx = \lambda x \sin 2x \pm \int \lambda \sin 2x \cdot 1  dx$                                          | This is also acceptable for M1 | M1 |



| Question<br>Number  | Scheme                                                                                                                                                                  |                                                                       | Mark  | XS . |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------|------|
| Aliter 3. (b) Way 2 | $\int x \cos^2 x  dx = \int x \left(\frac{\cos 2x + 1}{2}\right) dx$                                                                                                    | Substitutes <u>correctly</u> for $\cos^2 x$ in the given integral     | M1    |      |
|                     | $\begin{cases} u = x & \Rightarrow \frac{du}{dx} = 1 \\ \frac{dv}{dx} = \frac{1}{2}\cos 2x + \frac{1}{2} \Rightarrow v = \frac{1}{4}\sin 2x + \frac{1}{2}x \end{cases}$ | $u = x \text{ and } \frac{dv}{dx} = \frac{1}{2}\cos 2x + \frac{1}{2}$ |       |      |
|                     | $= \frac{1}{4}x\sin 2x + \frac{1}{2}x^2 - \int \left(\frac{1}{4}\sin 2x + \frac{1}{2}x\right) dx$                                                                       |                                                                       |       |      |
|                     | $= \frac{\frac{1}{4}x\sin 2x}{\sin 2x} + \frac{1}{2}x^2 + \frac{1}{8}\cos 2x - \frac{1}{4}x^2 + c$                                                                      | $\frac{1}{2}$ (their answer to (a)); or <u>underlined expression</u>  | A1 √  |      |
|                     | $= \frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x + \frac{1}{4}x^2 \ (+c)$                                                                                                    | Completely correct expression with/without $+c$                       | A1    | [3]  |
| Aliter (b)<br>Way 3 | $\int x \cos 2x  dx = \int x (2 \cos^2 x - 1)  dx$                                                                                                                      | Substitutes correctly for $\cos 2x$ in $\int x \cos 2x  dx$           | M1    |      |
|                     | $\Rightarrow 2\int x\cos^2 x dx - \int x dx = \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + c$                                                                             |                                                                       |       |      |
|                     | $\Rightarrow \int x \cos^2 x  dx = \frac{1}{2} \left( \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x \right); + \frac{1}{2} \int x  dx$                                    | $\frac{1}{2}$ (their answer to (a)); or <u>underlined expression</u>  | A1;√  |      |
|                     | $= \frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x + \frac{1}{4}x^2 (+c)$                                                                                                      | Completely correct expression with/without $+c$                       | A1    | [3]  |
|                     |                                                                                                                                                                         |                                                                       | 7 mar | ks   |



| Question<br>Number  | Scheme                                                                                                |                                                                           | Marks           |
|---------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|
| 4. (a)<br>Way 1     | A method of long division gives,                                                                      |                                                                           |                 |
|                     | $\frac{2(4x^2+1)}{(2x+1)(2x-1)} \equiv 2 + \frac{4}{(2x+1)(2x-1)}$                                    | <i>A</i> = 2                                                              | B1              |
|                     | $\frac{4}{(2x+1)(2x-1)} \equiv \frac{B}{(2x+1)} + \frac{C}{(2x-1)}$                                   |                                                                           |                 |
|                     | 4 = B(2x-1) + C(2x+1)<br>or their remainder, $Dx + E = B(2x-1) + C(2x+1)$                             | Forming any one of these two identities. Can be implied.                  | M1              |
|                     | Let $X = -\frac{1}{2}$ , $A = -2B \Rightarrow B = -2$                                                 | See note below                                                            |                 |
|                     | Let $X = \frac{1}{2}$ , $4 = 2C \implies C = 2$                                                       | either one of $B = -2$ or $C = 2$<br>both $B$ and $C$ correct             | A1<br>A1<br>[4] |
| Aliter 4. (a) Way 2 | $\frac{2(4x^2+1)}{(2x+1)(2x-1)} \equiv A + \frac{B}{(2x+1)} + \frac{C}{(2x-1)}$                       |                                                                           |                 |
| way 2               | See below for the award of B1                                                                         | decide to award B1 here!! for $A = 2$                                     | B1              |
|                     | $2(4x^2+1) \equiv A(2x+1)(2x-1) + B(2x-1) + C(2x+1)$                                                  | Forming this identity.  Can be implied.                                   | M1              |
|                     | Equate $x^2$ , $8 = 4A \Rightarrow A = 2$                                                             |                                                                           |                 |
|                     | Let $x = -\frac{1}{2}$ , $4 = -2B \implies B = -2$<br>Let $x = \frac{1}{2}$ , $4 = 2C \implies C = 2$ | See note below either one of $B = -2$ or $C = 2$ both $B$ and $C$ correct | A1<br>A1        |
|                     |                                                                                                       |                                                                           | [4]             |

If a candidate states one of either B or C correctly then the method mark M1 can be implied.

| Question<br>Number             | Scheme                                                                                                                                                                                                                                              |                                                                                                                                                                                                               | Marks                     |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 4. (b)                         | $\int \frac{2(4x^2+1)}{(2x+1)(2x-1)} dx = \int 2 - \frac{2}{(2x+1)} + \frac{2}{(2x+1)}$                                                                                                                                                             | $\frac{2}{(-1)} dx$                                                                                                                                                                                           |                           |
|                                | $=2x-\frac{2}{2}\ln(2x+1)+\frac{2}{2}\ln(2x-1) \ (+c)$                                                                                                                                                                                              | Either $p\ln(2x+1)$ or $q\ln(2x-1)$<br>or either $p\ln 2x+1$ or $q\ln 2x-1$<br>$A \to Ax$ $-\frac{2}{2}\ln(2x+1) + \frac{2}{2}\ln(2x-1)$ or $-\ln(2x+1) + \ln(2x-1)$<br>See note below.                       | M1* $B1$ $A1$ $cso & aef$ |
|                                | $\int_{1}^{2} \frac{2(4x^{2}+1)}{(2x+1)(2x-1)} dx = [2x-\ln(2x+1)+\ln(2x+1)]$                                                                                                                                                                       | (x-1) <sub>1</sub> <sup>2</sup> Substitutes limits of 2 and 1                                                                                                                                                 |                           |
|                                | $= (4 - \ln 5 + \ln 3) - (2 - \ln 3 + \ln 1)$ $= 2 + \ln 3 + \ln 3 - \ln 5$                                                                                                                                                                         | and subtracts the correct way round.  (Invisible brackets okay.)                                                                                                                                              | depM1*                    |
|                                | $=2+\ln\left(\frac{3(3)}{5}\right)$                                                                                                                                                                                                                 | Use of correct product (or power) and/or quotient laws for logarithms to obtain a single logarithmic term for <i>their numerical</i> expression.                                                              | M1                        |
|                                | $=2+\ln\left(\frac{9}{5}\right)$                                                                                                                                                                                                                    | $2 + \ln\left(\frac{9}{5}\right)$ Or $2 - \ln\left(\frac{5}{9}\right)$ and k stated as $\frac{9}{5}$ .                                                                                                        | A1 [6]                    |
|                                | /                                                                                                                                                                                                                                                   |                                                                                                                                                                                                               | 10 marks                  |
| and C.<br>their B of<br>Either | andidates may find rational values for $B$<br>They may combine the denominator of or $C$ with $(2x + 1)$ or $(2x - 1)$ . Hence: $\frac{a}{b(2x-1)} \rightarrow k \ln(b(2x - 1)) \text{ or }$ $\Rightarrow k \ln(b(2x + 1)) \text{ is okay for M1.}$ | To award this M1 mark, the candidate must use the appropriate law(s) of logarithms for their In terms to give a one single logarithmic term. Any error in applying the laws of logarithms would then earn M0. |                           |
| -ln(2x<br>do fluke             | ates are not allowed to fluke<br>+1) +ln(2x-1) for A1. Hence <b>cso</b> . If they<br>this, however, they can gain the final A1<br>r this part of the question.                                                                                      | Note: This is not a dependent method mark.                                                                                                                                                                    |                           |

6666/01 Core Maths C4 8 25<sup>th</sup> June 2007 June 2007 Advanced Subsidiary/Advanced Level in GCE Mathematics Version 8: THE FINAL VERSION

| Question<br>Number        | Scheme                                                                                                                                                                                                                           |                                                                                                                     | Mark     | S   |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------|-----|
| 5. (a)                    | If $l_1$ and $l_2$ intersect then: $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ |                                                                                                                     |          |     |
|                           | i: $1 + \lambda = 1 + 2\mu$ (1)<br>Any two of j: $\lambda = 3 + \mu$ (2)<br>k: $-1 = 6 - \mu$ (3)                                                                                                                                | Writes down any two of these equations correctly.                                                                   | M1       |     |
|                           | (1) & (2) yields $\lambda = 6$ , $\mu = 3$<br>(1) & (3) yields $\lambda = 14$ , $\mu = 7$<br>(2) & (3) yields $\lambda = 10$ , $\mu = 7$                                                                                         | Solves two of the above equations to find either one of $\lambda$ or $\mu$ correct both $\lambda$ and $\mu$ correct | A1<br>A1 |     |
|                           | checking eqn (3), $-1 \neq 3$<br>Either checking eqn (2), $14 \neq 10$<br>checking eqn (1), $11 \neq 15$                                                                                                                         | Complete method of putting their values of $\lambda$ and $\mu$ into a third equation to show a contradiction.       | B1√      |     |
|                           | or for example:<br>checking eqn (3), LHS = -1, RHS = 3<br>$\Rightarrow$ Lines $l_1$ and $l_2$ do not intersect                                                                                                                   | this type of explanation is also allowed for B1 $\sqrt{}$ .                                                         |          | [4] |
| Aliter<br>5. (a)<br>Way 2 | $\begin{array}{lll} \boldsymbol{k}: \ -1=6-\ \mu & \Rightarrow & \mu=7 \\ \\ \boldsymbol{i}: \ 1+\lambda=1+2\mu & \Rightarrow 1+\lambda=1+2(7) \\ \boldsymbol{j}: & \lambda=3+\ \mu & \Rightarrow & \lambda=3+\ (7) \end{array}$ | Uses the k component to find $\mu$ and substitutes their value of $\mu$ into either one of the i or j component.    | M1       |     |
|                           | i: $\lambda = 14$<br>j: $\lambda = 10$                                                                                                                                                                                           | either one of the $\lambda$ 's correct both of the $\lambda$ 's correct                                             | A1<br>A1 |     |
|                           | Either: These equations are then inconsistent Or: $14 \neq 10$ Or: Lines $l_1$ and $l_2$ do not intersect                                                                                                                        | Complete method giving rise to any one of these three explanations.                                                 | B1√      | [4] |



| Question<br>Number        | Scheme                                                                                                                                                                                                                           |                                                                                      | Marks    |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------|
| Aliter 5. (a) Way 3       | If $l_1$ and $l_2$ intersect then: $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ |                                                                                      |          |
|                           | i: $1 + \lambda = 1 + 2\mu$<br>Any two of j: $\lambda = 3 + \mu$<br>k: $-1 = 6 - \mu$                                                                                                                                            |                                                                                      | M1       |
|                           | (1) & (2) yields $\mu = 3$<br>(3) yields $\mu = 7$                                                                                                                                                                               | either one of the $\mu$ 's correct both of the $\mu$ 's correct                      | A1<br>A1 |
|                           | Either: These equations are then inconsist Or: $3 \neq 7$ Or: Lines $l_1$ and $l_2$ do not intersect                                                                                                                             |                                                                                      | B1√ [4]  |
| Aliter<br>5. (a)<br>Way 4 | Any two of $\mathbf{j}$ : $\lambda = 3 + \mu$                                                                                                                                                                                    | <ul><li>(1)</li><li>(2) Writes down any two of these equations</li><li>(3)</li></ul> | M1       |
|                           | (1) & (2) yields $\mu = 3$<br>(3) RHS = 6 - 3 = 3                                                                                                                                                                                | $\mu = 3$ RHS of (3) = 3                                                             | A1<br>A1 |
|                           | (3) yields − <b>1</b> ≠ <b>3</b>                                                                                                                                                                                                 | Complete method giving rise to this explanation.                                     | B1√ [4]  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                          | Marks       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5. (b)             | $\lambda = 1 \implies \overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}  \&  \mu = 2 \implies \overrightarrow{OB} = \begin{pmatrix} 5 \\ 5 \\ 4 \end{pmatrix} $ $\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \text{ or } \overrightarrow{OB} = \begin{pmatrix} 5 \\ 5 \\ 4 \end{pmatrix} \text{ or } A(2, 1, -1) \text{ or } B(5, 5, 4). $ (can be implied) | B1          |
|                    | $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 5 \\ 5 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \text{ or } \overrightarrow{BA} = \begin{pmatrix} -3 \\ -4 \\ -5 \end{pmatrix} $ Finding the difference between their $\overrightarrow{OB}$ and $\overrightarrow{OA}$ . (can be implied)  | <u>M1</u> √ |
|                    | Applying the dot product formula between "allowable" vectors. See notes below. $\overrightarrow{AB} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}, \ \mathbf{d}_1 = \mathbf{i} + \mathbf{j} + 0\mathbf{k} \ \& \ \theta \text{ is angle}$                                                                                                                                                           | M1          |
|                    | $\cos \theta = \frac{\overrightarrow{AB} \bullet \mathbf{d}_1}{\left  \overrightarrow{AB} \right  \cdot \left  \mathbf{d}_1 \right } = \pm \left( \frac{3 + 4 + 0}{\sqrt{50} \cdot \sqrt{2}} \right)$ Applies dot product formula between $\mathbf{d}_1 \text{ and their } \pm \overrightarrow{AB}.$ Correct expression.                                                                        | M1√<br>A1   |
|                    | $\cos \theta = \frac{7}{10} \text{ or } \frac{0.7 \text{ or } \frac{7}{\sqrt{100}}}{\text{but not } \frac{7}{\sqrt{50}\sqrt{2}}}$                                                                                                                                                                                                                                                               | A1 cao [6]  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                 | 10 marks    |

Candidates can score this mark if there is a complete method for finding the dot product between their vectors in the following cases:

Case 1: their ft 
$$\pm \overrightarrow{AB} = \pm (3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k})$$
  
and  $\mathbf{d}_1 = \mathbf{i} + \mathbf{j} + 0\mathbf{k}$   
$$\Rightarrow \cos \theta = \pm \left(\frac{3 + 4 + 0}{\sqrt{50} \cdot \sqrt{2}}\right)$$

Case 2: 
$$\mathbf{d}_1 = \mathbf{i} + \mathbf{j} + 0\mathbf{k}$$
  
and  $\mathbf{d}_2 = 2\mathbf{i} + \mathbf{j} - 1\mathbf{k}$   
$$\Rightarrow \cos \theta = \frac{2 + 1 + 0}{\sqrt{2} \cdot \sqrt{6}}$$

Case 3: 
$$\mathbf{d}_1 = \mathbf{i} + \mathbf{j} + 0\mathbf{k}$$
  
and  $\mathbf{d}_2 = 2(2\mathbf{i} + \mathbf{j} - 1\mathbf{k})$   
$$\Rightarrow \cos \theta = \frac{4 + 2 + 0}{\sqrt{2} \cdot \sqrt{24}}$$

Case 4: their ft 
$$\pm \overrightarrow{AB} = \pm (3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k})$$
  
and  $\mathbf{d}_2 = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$   
$$\Rightarrow \cos \theta = \pm \left(\frac{6 + 4 - 5}{\sqrt{50} \cdot \sqrt{6}}\right)$$

Case 5: their ft 
$$\overrightarrow{OA} = 2\mathbf{i} + 1\mathbf{j} - 1\mathbf{k}$$
  
and their ft  $\overrightarrow{OB} = 5\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}$   
$$\Rightarrow \cos \theta = \pm \left(\frac{10 + 5 - 4}{\sqrt{6} \cdot \sqrt{66}}\right)$$

Note: If candidate use cases 2, 3, 4 and 5 they cannot gain the final three marks for this part.

Note: Candidate can only gain some/all of the final three marks if they use case 1.

Examples of awarding of marks M1M1A1 in 5.(b)

| Example                                           | Marks              |
|---------------------------------------------------|--------------------|
| $\sqrt{50}.\sqrt{2}\cos\theta=\pm\big(3+4+0\big)$ | M1M1A1<br>(Case 1) |
| $\sqrt{2}.\sqrt{6}\cos\theta=3$                   | M1M0A0<br>(Case 2) |
| $\sqrt{2}.\sqrt{24}\cos\theta=4+2$                | M1M0A0<br>(Case 3) |

| Question<br>Number | Scheme                                                                                                                                                                                                                           |                                                                                                                                                                 | Marks      |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 6. (a)             | $x = \tan^2 t$ , $y = \sin t$                                                                                                                                                                                                    |                                                                                                                                                                 |            |
|                    | $\frac{\mathrm{d}x}{\mathrm{d}t} = 2(\tan t)\sec^2 t, \ \frac{\mathrm{d}y}{\mathrm{d}t} = \cos t$                                                                                                                                | Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$                                                                                                                     | B1         |
|                    | $\therefore \frac{dy}{dx} = \frac{\cos t}{2 \tan t \sec^2 t}  \left( = \frac{\cos^4 t}{2 \sin t} \right)$                                                                                                                        | $\frac{\pm \cos t}{\text{their } \frac{dx}{dt}}$                                                                                                                | M1         |
|                    |                                                                                                                                                                                                                                  | $\frac{+\cos t}{\text{their } \frac{dx}{dt}}$                                                                                                                   | A1√<br>[3] |
| (b)                | When $t = \frac{\pi}{4}$ , $x = 1$ , $y = \frac{1}{\sqrt{2}}$ (need values)                                                                                                                                                      | The point $(1, \frac{1}{\sqrt{2}})$ or $(1, \text{ awrt } 0.71)$<br>These coordinates can be implied.<br>( $y = \sin(\frac{\pi}{4})$ is not sufficient for B1)  | B1, B1     |
|                    | When $t = \frac{\pi}{4}$ , $m(T) = \frac{dy}{dx} = \frac{\cos \frac{\pi}{4}}{2 \tan \frac{\pi}{4} \sec^2 \frac{\pi}{4}}$                                                                                                         |                                                                                                                                                                 |            |
|                    | $=\frac{\frac{\frac{1}{\sqrt{2}}}{2.(1)\left(\frac{1}{\frac{1}{\sqrt{2}}}\right)^2}}{\frac{2.(1)\left(\frac{1}{\frac{1}{\sqrt{2}}}\right)}{2}}=\frac{\frac{\frac{1}{\sqrt{2}}}{2.(1)(2)}=\frac{1}{4\sqrt{2}}=\frac{\sqrt{2}}{8}$ | any of the five underlined expressions or awrt 0.18                                                                                                             | B1 aef     |
|                    | T: $y - \frac{1}{\sqrt{2}} = \frac{1}{4\sqrt{2}}(x-1)$                                                                                                                                                                           | Finding an equation of a tangent with their point and their tangent gradient or finds $c$ by using $y = (\underline{\text{their gradient}})x + \underline{c}$ . | M1√ aef    |
| /                  | T: $y = \frac{1}{4\sqrt{2}} x + \frac{3}{4\sqrt{2}}$ or $y = \frac{\sqrt{2}}{8} x + \frac{3\sqrt{2}}{8}$                                                                                                                         | Correct simplified EXACT equation of tangent                                                                                                                    | A1 aef cso |
|                    | or $\frac{1}{\sqrt{2}} = \frac{1}{4\sqrt{2}}(1) + c \implies c = \frac{1}{\sqrt{2}} - \frac{1}{4\sqrt{2}} = \frac{3}{4\sqrt{2}}$                                                                                                 |                                                                                                                                                                 |            |
|                    | Hence T: $y = \frac{1}{4\sqrt{2}} x + \frac{3}{4\sqrt{2}}$ or $y = \frac{\sqrt{2}}{8} x + \frac{3\sqrt{2}}{8}$                                                                                                                   | <b>\</b>                                                                                                                                                        | [5]        |

Note: The x and y coordinates must be the right way round.

A candidate who incorrectly differentiates  $\tan^2 t$  to give  $\frac{dx}{dt} = 2\sec^2 t$  or  $\frac{dx}{dt} = \sec^4 t$  is then able to fluke the correct answer in part (b). Such candidates can potentially get: (a) B0M1A1 $\sqrt{\phantom{a}}$  (b) B1B1B1M1A0 **cso**. Note: cso means "correct solution only".

**Note**: part (a) not fully correct implies candidate can achieve a maximum of 4 out of 5 marks in part (b).

| Question<br>Number        | Scheme                                                       |                                                                        | Marks      |
|---------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|------------|
| 6. (c)<br>Way 1           | $x = \tan^2 t = \frac{\sin^2 t}{\cos^2 t} \qquad y = \sin t$ |                                                                        |            |
| ·                         | $x = \frac{\sin^2 t}{1 - \sin^2 t}$                          | $Uses \cos^2 t = 1 - \sin^2 t$                                         | M1         |
|                           | $X = \frac{y^2}{1 - y^2}$                                    | Eliminates 't' to write an equation involving x and y.                 | M1         |
|                           | $x(1-y^2)=y^2 \Rightarrow x-xy^2=y^2$                        |                                                                        |            |
|                           | $x = y^2 + xy^2 \Rightarrow x = y^2(1+x)$                    | Rearranging and factorising with an attempt to make $y^2$ the subject. | ddM1       |
|                           | $y^2 = \frac{x}{1+x}$                                        | $\frac{x}{1+x}$                                                        | A1 [4]     |
| Aliter<br>6. (c)<br>Way 2 | $1 + \cot^2 t = \cos^2 t$                                    | $Uses 1 + \cot^2 t = co \sec^2 t$                                      | M1         |
| way 2                     | $= \frac{1}{\sin^2 t}$                                       | Uses $\cos ec^2 t = \frac{1}{\sin^2 t}$                                | M1 implied |
|                           | Hence, $1 + \frac{1}{x} = \frac{1}{y^2}$                     | Eliminates 't' to write an equation involving $x$ and $y$ .            | ddM1       |
|                           | Hence, $y^2 = 1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$        | $1 - \frac{1}{(1+x)}$ or $\frac{x}{1+x}$                               |            |
|                           |                                                              |                                                                        | [4]        |

is an acceptable response for the final accuracy A1 mark.

| M1  M1  ddM1 |
|--------------|
| m ddM1       |
| n<br>y. ddM1 |
| y. ddivi i   |
| y. ddivi i   |
|              |
| A1           |
|              |
| t M1         |
| -<br>t M1    |
| ddM1         |
| - A1         |
| t            |

 $\frac{1}{1+\frac{1}{x}}$  is an acceptable response for the final accuracy A1 mark.

| Question | Scheme                                                                                                   | Marks    |
|----------|----------------------------------------------------------------------------------------------------------|----------|
| Number   | Scheme                                                                                                   | Warks    |
| Aliter   |                                                                                                          |          |
| 6. (c)   | $x = \tan^2 t$ $y = \sin t$                                                                              |          |
| Way 5    |                                                                                                          |          |
|          | $x = \tan^2 t \implies \tan t = \sqrt{x}$                                                                |          |
|          | Draws a right-angled triangle and places both $\sqrt{x}$ and 1 on the triangle                           | M1       |
|          | Uses Pythagoras to deduce the hypotenuse                                                                 | M1       |
|          | Hence, $y = \sin t = \frac{\sqrt{x}}{\sqrt{1+x}}$ Eliminates 't' to write an equation involving x and y. | ddM1     |
|          | Hence, $y^2 = \frac{x}{1+x}$ $\frac{x}{1+x}$                                                             | A1 [4]   |
|          |                                                                                                          | 12 marks |

is an acceptable response for the final accuracy A1 mark.

There are so many ways that a candidate can proceed with part (c). If a candidate produces a correct solution then please award all four marks. If they use a method commensurate with the five ways as detailed on the mark scheme then award the marks appropriately. If you are unsure of how to apply the scheme please escalate your response up to your team leader.



| Question<br>Number |                                                                                                                                                                                                                                                                | Scheme                        |                             |                                           |                                                                                                                                                                                                                                                                                            | Mark                                                      | ζS  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----|
| 7. (a)             | x 0 y 0                                                                                                                                                                                                                                                        | $\frac{\pi}{16}$ 0.445995927  | $\frac{\pi}{8}$ 0.643594252 | $\frac{3\pi}{16}$ 0.817421946             | $\frac{\pi}{4}$                                                                                                                                                                                                                                                                            |                                                           |     |
| (b)<br>Way 1       |                                                                                                                                                                                                                                                                | can be nplied - 2(0.44600 + 0 |                             | $\frac{\text{For s}}{2)+1}$ inside bra    | 0.446 or awrt 0.44600 awrt 0.64359 awrt 0.81742  Outside brackets $\frac{1}{2} \times \frac{\pi}{16} \text{ or } \frac{\pi}{32}$ Structure of trapezium $\frac{\text{rule}}{1} \left\{ \frac{\pi}{16} \right\};$ Correct expression ackets which all must be multiplied by $\frac{h}{2}$ . | B1 B1 B1  B1 $\underline{M1}\sqrt{}$ A1 cao               |     |
| Aliter (b) Way 2   | Area $\approx \frac{\pi}{16} \times \left\{ \frac{0+0.44600}{2} \right\}$<br>which is equivalent to:<br>Area $\approx \frac{1}{2} \times \frac{\pi}{16}$ ; $\times \left\{ \frac{0+0.44600}{2} \right\}$<br>$= \frac{\pi}{16} \times 2.40701 = \frac{\pi}{16}$ | - 2(0.44600 + 0               | .64359 + 0.81742            | One of fi<br>two of<br>inside bra<br>Corr | d a divisor of 2 on all terms inside brackets. It and last ordinates, of the middle ordinates ackets ignoring the 2. The rect expression inside ackets if $\frac{1}{2}$ was to be factorised out. $0.4726$                                                                                 | B1 $\underline{M1}\sqrt{}$ $\underline{A1}\sqrt{}$ A1 cao | [4] |

$$Area = \frac{1}{2} \times \frac{\pi}{20} \times \left\{0 + 2(0.44600 + 0.64359 + 0.81742) + 1\right\} = 0.3781$$
, gains B0M1A1A0

In (a) for  $X = \frac{\pi}{16}$  writing 0.4459959... then 0.45600 gains B1 for awrt 0.44600 even though 0.45600 is incorrect.

In (b) you can follow though a candidate's values from part (a) to award M1 ft, A1 ft

| Question<br>Number | Scheme | Marks |
|--------------------|--------|-------|
|                    |        |       |

6666/01 Core Maths C4 17 25<sup>th</sup> June 2007 June 2007 Advanced Subsidiary/Advanced Level in GCE Mathematics Version 8: THE FINAL VERSION



7. (c) Volume 
$$= (\pi) \int_{0}^{\frac{\pi}{2}} (\sqrt{\tan x})^{2} dx = (\pi) \int_{0}^{\frac{\pi}{2}} \tan x dx$$

$$= (\pi) \left[ \frac{\ln \sec x}{0} \right]_{0}^{\frac{\pi}{2}} \quad \text{or } = (\pi) \left[ -\frac{\ln \cos x}{0} \right]_{0}^{\frac{\pi}{2}}$$

$$= (\pi) \left[ (\ln \sec \frac{\pi}{4}) - (\ln \sec 0) \right]$$

$$= (\pi) \left[ (-\ln \cos \frac{\pi}{4}) - (\ln \csc 0) \right]$$

$$= (\pi) \left[ (-\ln \cos \frac{\pi}{4}) - (\ln \cos 0) \right]$$

$$= \pi \left[ \ln \left( \frac{1}{\frac{1}{2}} \right) - \ln \left( \frac{1}{1} \right) \right] = \pi \left[ \ln \sqrt{2} - \ln 1 \right]$$
or
$$= \pi \left[ -\ln \left( \frac{1}{\frac{1}{2}} \right) - \ln \left( 1 \right) \right]$$

$$= \frac{\pi \ln \sqrt{2}}{2} \quad \text{or } \frac{\pi \ln \frac{2}{\sqrt{2}}}{2} \quad \text{or } \frac{1}{2} \pi \ln 2 \quad \text{or } -\frac{\pi \ln \left( \frac{1}{\sqrt{2}} \right)}{2} \quad \text{or } \frac{\pi}{2} \ln \left( \frac{1}{2} \right)}$$

$$= \frac{\pi \ln \sqrt{2}}{2} \quad \text{or } \frac{\pi \ln \frac{2}{\sqrt{2}}}{2} \quad$$

If a candidate gives the correct exact answer and then writes 1.088779..., then such a candidate can be awarded A1 (aef). The subsequent working would then be ignored. (isw)

Beware: In part (c) the factor of  $\pi$  is not needed for the first three marks.

Beware: In part (b) a candidate can also add up individual trapezia in this way:

 $\text{Area} \approx \tfrac{1}{2}.\tfrac{\pi}{16} \Big( \underline{0} + \underline{0.44600} \Big) + \tfrac{1}{2}.\tfrac{\pi}{16} \Big( \underline{0.44600} + \underline{0.64359} \Big) + \tfrac{1}{2}.\tfrac{\pi}{16} \Big( \underline{0.64359} + \underline{0.81742} \Big) + \tfrac{1}{2}.\tfrac{\pi}{16} \Big( \underline{0.81742} + \underline{1} \Big) + \tfrac{1}{2}. \tfrac{\pi}{16} \Big( \underline{0.81742} + \underline{1} \Big) + \tfrac{1}{2}.\tfrac{\pi}{16} \Big( \underline{0.81742} + \underline{1} \Big) +$ 



| Question<br>Number | Scheme                                                                                                                                                                              |                                                                                                                    | Marks  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|
| 8. (a)             | $\frac{dP}{dt} = kP  \text{and}  t = 0, \ P = P_0  (1)$                                                                                                                             |                                                                                                                    |        |
|                    | $\int \frac{\mathrm{d}P}{P} = \int k  \mathrm{d}t$                                                                                                                                  | Separates the variables with $\int \frac{dP}{P}$ and $\int k dt$ on either side with integral signs not necessary. | M1     |
|                    | ln P = kt; (+ c)                                                                                                                                                                    | Must see In P and kt; Correct equation with/without + c.                                                           | A1     |
|                    | When $t = 0$ , $P = P_0 \implies \ln P_0 = c$<br>(or $P = Ae^{kt} \implies P_0 = A$ )                                                                                               | Use of boundary condition (1) to attempt to find the constant of integration.                                      | M1     |
|                    | $\ln P = kt + \ln P_0 \implies e^{\ln P} = e^{kt + \ln P_0} = e^{kt} \cdot e^{\ln P_0}$                                                                                             |                                                                                                                    |        |
|                    | Hence, $P = P_0 e^{kt}$                                                                                                                                                             | $P = P_0 e^{kt}$                                                                                                   | A1 [4] |
| (b)                | $P = 2P_0 \& k = 2.5 \implies 2P_0 = P_0 e^{2.5t}$                                                                                                                                  | Substitutes $P = 2P_0$ into an expression involving $P$                                                            | M1     |
|                    | $e^{2.5t} = 2 \Rightarrow \underline{\ln e^{2.5t} = \ln 2}$ or $\underline{2.5t = \ln 2}$<br>or $e^{kt} = 2 \Rightarrow \underline{\ln e^{kt} = \ln 2}$ or $\underline{kt = \ln 2}$ | Eliminates $P_0$ and takes ln of both sides                                                                        | M1     |
|                    | $\Rightarrow t = \frac{1}{2.5} \ln 2 = 0.277258872 \text{ days}$                                                                                                                    |                                                                                                                    |        |
|                    | $t = 0.277258872 \times 24 \times 60 = 399.252776$ minutes                                                                                                                          |                                                                                                                    |        |
|                    | t = 399 min or $t = 6 hr  39 mins$ (to nearest minute)                                                                                                                              | awrt $t = 399$ or 6 hr 39 mins                                                                                     | A1     |
|                    |                                                                                                                                                                                     |                                                                                                                    | [3]    |

 $P = P_0 e^{kt}$  written down without the first M1 mark given scores all four marks in part (a).



| Question<br>Number | Scheme                                                                                                                          |                                                                                                                                          | Marks    |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 8. (c)             | $\frac{dP}{dt} = \lambda P \cos \lambda t  \text{and}  t = 0, \ P = P_0  (1)$                                                   |                                                                                                                                          |          |
|                    | $\int \frac{\mathrm{d}P}{P} = \int \lambda \cos \lambda t   \mathrm{d}t$                                                        | Separates the variables with $\int \frac{dP}{P}$ and $\int \lambda \cos \lambda t  dt$ on either side with integral signs not necessary. | M1       |
|                    | $ ln P = \sin \lambda t; (+ c) $                                                                                                | Must see $\ln P$ and $\sin \lambda t$ ;<br>Correct equation with/without + c.                                                            | A1       |
|                    | When $t = 0$ , $P = P_0 \implies \ln P_0 = c$<br>(or $P = Ae^{\sin \lambda t} \implies P_0 = A$ )                               | Use of boundary condition (1) to attempt to find the constant of integration.                                                            | M1       |
|                    | $\ln P = \sin \lambda t + \ln P_0  \Rightarrow e^{\ln P} = e^{\sin \lambda t + \ln P_0} = e^{\sin \lambda t} \cdot e^{\ln P_0}$ |                                                                                                                                          |          |
|                    | Hence, $P = P_0 e^{\sin \lambda t}$                                                                                             | $P = P_0 e^{\sin \lambda t}$                                                                                                             | A1 [4]   |
| (d)                | $P = 2P_0 \& \lambda = 2.5 \implies 2P_0 = P_0 e^{\sin 2.5t}$                                                                   |                                                                                                                                          |          |
|                    | $e^{\sin 2.5t} = 2 \implies \sin 2.5t = \ln 2$<br>or $e^{\lambda t} = 2 \implies \sin \lambda t = \ln 2$                        | Eliminates $P_0$ and makes $\sin \lambda t$ or $\sin 2.5t$ the subject by taking ln's                                                    | M1       |
|                    | $t = \frac{1}{2.5}\sin^{-1}\left(\ln 2\right)$                                                                                  | Then rearranges to make <i>t</i> the subject.                                                                                            | dM1      |
|                    | t = 0.306338477                                                                                                                 | (must use sin <sup>-1</sup> )                                                                                                            |          |
|                    | $t = 0.306338477 \times 24 \times 60 = 441.1274082$ minutes                                                                     |                                                                                                                                          |          |
|                    | t = 441min or $t = 7$ hr 21 mins (to nearest minute)                                                                            | awrt $t = 441$ or $\frac{7 \text{ hr } 21 \text{ mins}}{}$                                                                               | A1 [3]   |
|                    |                                                                                                                                 |                                                                                                                                          | 14 marks |

 $P = P_0 e^{\sin \lambda t}$  written down without the first M1 mark given scores all four marks in part (c).

| Question<br>Number        | Scheme                                                                                                                                                           |                                                                                                                   | Marks  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|
|                           | $\frac{dP}{dt} = kP  \text{and}  t = 0, \ P = P_0  (1)$                                                                                                          |                                                                                                                   |        |
| Aliter<br>8. (a)<br>Way 2 | $\int \frac{\mathrm{d}P}{kP} = \int 1  \mathrm{d}t$                                                                                                              | Separates the variables with $\int \frac{dP}{kP}$ and $\int dt$ on either side with integral signs not necessary. | M1     |
|                           | $\frac{1}{k} \ln P = t; (+c)$                                                                                                                                    | Must see $\frac{1}{k} \ln P$ and $t$ ;<br>Correct equation with/without + c.                                      | A1     |
|                           | When $t = 0$ , $P = P_0 \Rightarrow \frac{1}{k} \ln P_0 = c$<br>(or $P = Ae^{kt} \Rightarrow P_0 = A$ )                                                          | Use of boundary condition (1) to attempt to find the constant of integration.                                     | M1     |
|                           | $\frac{1}{k}\ln P = t + \frac{1}{k}\ln P_0 \implies \ln P = kt + \ln P_0$ $\Rightarrow e^{\ln P} = e^{kt + \ln P_0} = e^{kt} \cdot e^{\ln P_0}$                  |                                                                                                                   |        |
|                           | Hence, $P = P_0 e^{kt}$                                                                                                                                          | $\underline{P = P_0 e^{kt}}$                                                                                      | A1 [4] |
| Aliter<br>8. (a)<br>Way 3 | $\int \frac{\mathrm{d}P}{kP} = \int 1  \mathrm{d}t$                                                                                                              | Separates the variables with $\int \frac{dP}{kP}$ and $\int dt$ on either side with integral signs not necessary. | M1     |
|                           | $\frac{1}{k}\ln(kP)=t;(+c)$                                                                                                                                      | Must see $\frac{1}{k} \ln(kP)$ and $t$ ;<br>Correct equation with/without + c.                                    | A1     |
|                           | When $t = 0$ , $P = P_0 \Rightarrow \frac{1}{k} \ln(kP_0) = c$<br>$\left(\text{or } kP = Ae^{kt} \Rightarrow kP_0 = A\right)$                                    | Use of boundary condition (1) to attempt to find the constant of integration.                                     | M1     |
|                           | $\frac{1}{k}\ln(kP) = t + \frac{1}{k}\ln(kP_0) \Rightarrow \ln(kP) = kt + \ln(kP_0)$ $\Rightarrow e^{\ln(kP)} = e^{kt + \ln(kP_0)} = e^{kt} \cdot e^{\ln(kP_0)}$ |                                                                                                                   |        |
|                           | $\Rightarrow kP = e^{kt} \cdot (kP_0) \Rightarrow kP = kP_0 e^{kt}$ $(\text{or } kP = kP_0 e^{kt})$                                                              |                                                                                                                   |        |
|                           | Hence, $\underline{P} = P_0 e^{kt}$                                                                                                                              | $\underline{P = P_0 e^{kt}}$                                                                                      | A1 [4] |

| Question<br>Number | Scheme | Marks |
|--------------------|--------|-------|
|                    |        |       |

6666/01 Core Maths C4 21 June 2007 Advanced Subsidiary/Advanced Level in GCE Mathematics

25<sup>th</sup> June 2007 Version 8: THE FINAL VERSION

|                           | $\frac{dP}{dt} = \lambda P \cos \lambda t  \text{and}  t = 0, \ P = P_0  (1)$                                                      |                                                                                                                                          |        |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Aliter<br>8. (c)<br>Way 2 | $\int \frac{\mathrm{d}P}{\lambda P} = \int \cos \lambda t   \mathrm{d}t$                                                           | Separates the variables with $\int \frac{dP}{\lambda P}$ and $\int \cos \lambda t  dt$ on either side with integral signs not necessary. | M1     |
|                           | $\frac{1}{\lambda} \ln P = \frac{1}{\lambda} \sin \lambda t; (+ c)$                                                                | Must see $\frac{1}{\lambda} \ln P$ and $\frac{1}{\lambda} \sin \lambda t$ ;<br>Correct equation with/without + c.                        | A1     |
|                           | When $t = 0$ , $P = P_0 \Rightarrow \frac{1}{\lambda} \ln P_0 = c$<br>(or $P = Ae^{\sin \lambda t} \Rightarrow P_0 = A$ )          | Use of boundary condition (1) to attempt to find the constant of integration.                                                            | M1     |
|                           | $\frac{1}{\lambda} \ln P = \frac{1}{\lambda} \sin \lambda t + \frac{1}{\lambda} \ln P_0 \implies \ln P = \sin \lambda t + \ln P_0$ |                                                                                                                                          |        |
|                           | $\Rightarrow e^{\ln P} = e^{\sin \lambda t + \ln P_0} = e^{\sin \lambda t} \cdot e^{\ln P_0}$                                      |                                                                                                                                          |        |
|                           | Hence, $P = P_0 e^{\sin \lambda t}$                                                                                                | $\underline{P = P_0 e^{\sin \lambda t}}$                                                                                                 | A1 [4] |

 $P = P_0 e^{kt}$  written down without the first M1 mark given scores all four marks in part (a).

 $P = P_0 e^{\sin \lambda t}$  written down without the first M1 mark given scores all four marks in part (c).



| Question<br>Number        | Scheme                                                                                                                                       |                                                                                                                                          | Marks |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                           | $\frac{dP}{dt} = \lambda P \cos \lambda t  \text{and}  t = 0, \ P = P_0  (1)$                                                                |                                                                                                                                          |       |
| Aliter<br>8. (c)<br>Way 3 | $\int \frac{\mathrm{d}P}{\lambda P} = \int \cos \lambda t   \mathrm{d}t$                                                                     | Separates the variables with $\int \frac{dP}{\lambda P}$ and $\int \cos \lambda t  dt$ on either side with integral signs not necessary. | M1    |
|                           | $\frac{1}{\lambda} \ln(\lambda P) = \frac{1}{\lambda} \sin \lambda t; (+ c)$                                                                 | Must see $\frac{1}{\lambda} \ln(\lambda P)$ and $\frac{1}{\lambda} \sin \lambda t$ ;<br>Correct equation with/without + c.               | A1    |
|                           | When $t = 0$ , $P = P_0 \implies \frac{1}{\lambda} \ln(\lambda P_0) = c$<br>(or $\lambda P = Ae^{\sin \lambda t} \implies \lambda P_0 = A$ ) | Use of boundary condition (1) to attempt to find the constant of integration.                                                            | M1    |
|                           | $\frac{1}{\lambda} \ln(\lambda P) = \frac{1}{\lambda} \sin \lambda t + \frac{1}{\lambda} \ln(\lambda P_0)$                                   |                                                                                                                                          |       |
|                           | $\Rightarrow \ln(\lambda P) = \sin \lambda t + \ln(\lambda P_0)$                                                                             |                                                                                                                                          |       |
|                           | $\Rightarrow e^{\ln(\lambda P)} = e^{\sin \lambda t + \ln(\lambda P_0)} = e^{\sin \lambda t} \cdot e^{\ln(\lambda P_0)}$                     |                                                                                                                                          |       |
|                           | $\Rightarrow \lambda P = e^{\sin \lambda t} \cdot (\lambda P_0)$ $\left( \text{or } \lambda P = \lambda P_0 e^{\sin \lambda t} \right)$      |                                                                                                                                          |       |
|                           | Hence, $P = P_0 e^{\sin \lambda t}$                                                                                                          | $P = P_0 e^{\sin \lambda t}$                                                                                                             | A1    |

• Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark.

ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.

depM1 \* denotes a method mark which is dependent upon the award of M1 \*.

ft denotes "follow through"

cao denotes "correct answer only"

aef denotes "any equivalent form"