Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Core Mathematics C3 (6665)

J une 2007
 6665 Core Mathematics C3
 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\ln 3 x=\ln 6$ or $\ln x=\ln \left(\frac{6}{3}\right) \quad$ [implied by $0.69 \ldots$] or $\ln \left(\frac{3 x}{6}\right)=0$ $x=2 \quad$ (only this answer)	$\begin{aligned} & \text { M1 } \\ & \text { A1 (cso) (2) } \\ & \hline \end{aligned}$
(b)	$\begin{aligned} & \left.\left(\mathrm{e}^{x}\right)^{2}-4 \mathrm{e}^{x}+3=0 \quad \text { (any } 3 \text { term form }\right) \\ & \left(\mathrm{e}^{x}-3\right)\left(\mathrm{e}^{x}-1\right)=0 \quad \text { or } \quad \mathrm{e}^{x}=1 \quad \text { Solving quadratic } \\ & \mathrm{e}^{x}=3 \quad \text { or } \\ & x=\ln 3, \quad x=0 \quad(\text { or } \ln) \quad \end{aligned}$	M1 M1 dep M1 A1 (4) (6 marks)

Notes: (a) Answer $x=2$ with no working or no incorrect working seen: M1A1
Beware $x=2$ from $\ln x=\frac{\ln 6}{\ln 3}=\ln 2$ M0A0
$\ln x=\ln 6-\ln 3 \Rightarrow x=e^{(\ln 6-\ln 3)}$ allow M1, $x=2$ (no wrong working) A1
(b) $1^{\text {st }} \mathrm{M} 1$ for attempting to multiply through by e^{x} : Allow y, X, even x, for e^{x}

Be generous for M1 e.g $e^{2 x}+3=4, \quad e^{x^{2}}+3=4 e^{x}$,

$$
3 y^{2}+1=12 y\left(\text { from } 3 \mathrm{e}^{-x}=\frac{1}{3 e^{x}}\right), \mathrm{e}^{x}+3=4 \mathrm{e}^{x}
$$

$2^{\text {nd }} \mathrm{M} 1$ is for solving quadratic (may be by formula or completing the square) as far as getting two values for e^{x} or y or X etc
$3^{\text {rd }} \mathrm{M} 1$ is for converting their answer(s) of the form $\mathrm{e}^{\mathrm{x}}=\mathrm{k}$ to $\mathrm{x}=\operatorname{lnk}$ (must be exact)
A 1 is for $\ln 3$ and $\ln 1$ or 0 (Both required and no further solutions)
2.

(a)	$2 x^{2}+3 x-2=(2 x-1)(x+2)$ at any stage $\mathrm{f}(x)=\frac{(2 x+3)(2 x-1)-(9+2 x)}{(2 x-1)(x+2)}$ f.t. on error in denominator factors (need not be single fraction) Simplifying numerator to quadratic form $\quad\left[=\frac{4 x^{2}+4 x-3-9-2 x}{(2 x-1)(x+2)}\right]$ Correct numerator $=\frac{4 x^{2}+2 x-12}{[(2 x-1)(x+2)]}$ Factorising numerator, with a denominator $=\frac{2(2 x-3)(x+2)}{(2 x-1)(x+2)}$ o.e. $\begin{equation*} \left[=\frac{2(2 x-3)}{2 x-1}\right] \quad=\frac{4 x-6}{2 x-1} \tag{7} \end{equation*}$	B1 M1, A1V M1 A1 M1 A1 cso
Alt.(a)		
(b)	Complete method for $\mathrm{f}^{\prime}(x)$; e.g $\mathrm{f}^{\prime}(x)=\frac{(2 x-1) \times 4-(4 x-6) \times 2}{(2 x-1)^{2}}$ o.e $=\frac{8}{(2 x-1)^{2}}$ or $8(2 x-1)^{-2}$ Not treating f^{-1} (for f^{\prime}) as misread	$\begin{array}{\|l\|} \text { M1 A1 } \\ \text { A1 } \tag{3}\\ \quad \text { (} \mathbf{1 0} \text { marks) } \\ \hline \end{array}$

Notes: (a) $1^{\text {st }}$ M1 in either version is for correct method
$1^{\text {st }}$ A1 Allow $\frac{2 x+3(2 x-1)-(9+2 x)}{(2 x-1)(x+2)}$ or $\frac{(2 x+3)(2 x-1)-9+2 x}{(2 x-1)(x+2)}$ or $\frac{2 x+3(2 x-1)-9+2 x}{(2 x-1)(x+2)}$ (fractions)
$2^{\text {nd }}$ M1 in (main a) is for forming 3 term quadratic in numerator
$3^{\text {rd }} \mathrm{M} 1$ is for factorising their quadratic (usual rules) ; factor of 2 need not be extracted
(*) A1 is given answer so is cso
Alt (a) $3^{\text {rd }} \mathrm{M} 1$ is for factorising resulting quadratic
Notice that B1 likely to be scored very late but on ePen scored first
(b) SC: For M allow \pm given expression or one error in product rule

Alt: Attempt at $\mathrm{f}(x)=2-4(2 x-1)^{-1}$ and diff. M1; $k(2 x-1)^{-2} \mathrm{~A} 1$; A1 as above
Accept $8\left(4 x^{2}-4 x+1\right)^{-2}$. Differentiating original function - mark as scheme.

Notes: (a) Generous M for attempt at $f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$
$1^{\text {st }} \mathrm{A} 1$ for one correct, $2^{\text {nd }} \mathrm{A} 1$ for the other correct.
Note that $x^{2} e^{x}$ on its own scores no marks
(b) $1^{\text {st }}$ A1 $(x=0)$ may be omitted, but for
$2^{\text {nd }}$ A1 both sets of coordinates needed ; f.t only on candidate's $x=-2$
(c) M1 requires complete method for candidate's (a), result may be unsimplified for A1
(d) A1 is $\operatorname{cso} ; x=0, \min$, and $x=-2$, max and no incorrect working seen., or (in alternative) sign of $\frac{d y}{d x}$ either side correct, or values of y appropriate to t.p.
Need only consider the quadratic, as may assume $\mathrm{e}^{x}>0$.
If all marks gained in (a) and (c), and correct x values, give M1A1 for correct statements with no working

6. (a) Complete method for R : e.g. $R \cos \alpha=3, R \sin \alpha=2, R=\sqrt{\left(3^{2}+2^{2}\right)} \quad$ M1 $R=\sqrt{13} \quad$ or 3.61 (or more accurate)
Complete method for $\tan \alpha=\frac{2}{3} \quad$ [Allow $\tan \alpha=\frac{3}{2}$]
(b)

Greatest value $=(\sqrt{13})^{4}=169$	M1, A1 (2)
$\sin (x+0.588)=\frac{1}{\sqrt{13}} \quad(=0.27735 \ldots) \quad \sin (x+\text { their } \alpha)=\frac{1}{\text { their } R}$	M1
$(x+0.588) \quad=0.281\left(03 \ldots\right.$ or 16.1°	A1
$\begin{aligned} &=\pi-0.28103 \ldots \\ & \quad \text { Must be } \pi-\text { their } 0.281 \text { or } 180^{\circ}-\text { their } 16.1^{\circ} \end{aligned}$	M1
or $(x+0.588)$ $=2 \pi+0.28103 \ldots$ Must be $2 \pi+$ their 0.281 or	M1
$x=2.273$ or $x=5.976$ (awrt) Both (radians only)	A1 (5)
If 0.281 or 16.1° not seen, correct answers imply this A mark	(11 marks)

Notes: (a) $1^{\text {st }}$ M1 on Epen for correct method for R, even if found second
$2^{\text {nd }}$ M1 for correct method for $\tan \alpha$
No working at all: M1A1 for $\sqrt{ } 13$, M1A1 for 0.588 or 33.7°.
N.B. R $\cos \alpha=2$, Rsin $\alpha=3$ used, can still score M1A1 for R, but loses the A mark for α. $\cos \alpha=3, \sin \alpha=2$: apply the same marking.
(b) M1 for realising $\sin (x+\alpha)= \pm 1$, so finding R^{4}.
(c) Working in mixed degrees/rads : first two marks available

Working consistently in degrees: Possible to score first 4 marks
[Degree answers, just for reference, Only are 130.2° and 342.4°]
Third M1 can be gained for candidate's 0.281 - candidate's $0.588+2 \pi$ or equiv. in degrees
One of the answers correct in radians or degrees implies the corresponding M mark.
Alt: (c) (i) Squaring to form quadratic in $\sin x$ or $\cos x$
$\left[13 \cos ^{2} x-4 \cos x-8=0, \quad 13 \sin ^{2} x-6 \sin x-3=0\right]$
Correct values for $\cos x=0.953 \ldots,-0.646$; or $\sin x=0.767,2.27$ awrt A1
For any one value of $\cos x$ or $\sin x$, correct method for two values of $x \quad$ M1
$x=2.273$ or $x=5.976$ (awrt) Both seen anywhere A1
Checking other values $(0.307,4.011$ or $0.869,3.449)$ and discarding M1
(ii) Squaring and forming equation of form $a \cos 2 x+b \sin 2 x=c$
$9 \sin ^{2} x+4 \cos ^{2} x+12 \sin 2 x=1 \Rightarrow 12 \sin 2 x+5 \cos 2 x=11$
Setting up to solve using R formula e.g. $\sqrt{ } 13 \cos (2 x-1.176)=11$

$$
(2 x-1.176)=\cos ^{-1}\left(\frac{11}{\sqrt{13}}\right)=0.562(0 \ldots \quad(\alpha) \quad \mathrm{A} 1
$$

$$
(2 x-1.176)=2 \pi-\alpha, 2 \pi+\alpha, \ldots \ldots \ldots
$$

$x=2.273$ or $x=5.976$ (awrt) Both seen anywhere A1
Checking other values and discarding

Notes: (b) (main scheme) M1 is for $\left(10+10 \mathrm{e}^{-\frac{5}{8}}\right) \mathrm{e}^{-\frac{1}{8}}$, or $\{10+$ their $(\mathrm{a})\} \mathrm{e}^{-(1 / 8)}$
N.B. The answer is given. There are many correct answers seen which deserve M0A0 or M1A0 (If adding two values, these should be 4.724 and 8.825)
(c) $1^{\text {st }} \mathrm{M}$ is for $\left(10+10 \mathrm{e}^{-\frac{5}{8}}\right) e^{-\frac{T}{8}}=3$
$2^{\text {nd }} \mathrm{M}$ is for converting $e^{-\frac{T}{8}}=k(\mathrm{k}>0)$ to $-\frac{T}{8}=\ln k$. This is independent of $1^{\text {st }} \mathrm{M}$.
Trial and improvement: M1 as scheme,
M1 correct process for their equation (two equal to 3 s.f.)
A1 as scheme

