Mark Scheme

Question Number	Scheme	Marks
1. (a) (b) (i) (ii)	A random variable; function of known observations (from a population). data OK Yes No	B1 B1 (2) B1 (1) B1 (1) Total 4
2. (a) (b)	$\begin{array}{rlr} \mathrm{P}(J \geq 10)= & \text { or }=1-\mathrm{P}(J \leq 9) & \text { implies method } \\ & =1-0.9919 & \text { awrt } 0.0081 \\ & =0.0081 & \\ & \\ & \\ & =(0.73)^{25}+25(0.73)^{24}(0.27) & \text { clear attempt at ' } 25 \text { ' required } \\ & =0.00392 & \text { awrt } 0.0039 \text { implies M } \end{array}$	M1 A1 (2) M1 M1 A1 (3) Total 5

Question Number	Scheme	Marks
7. (a)	$\begin{aligned} 1-\mathrm{F}(0.3) & =1-\left(2 \times 0.3^{2}-0.3^{3}\right) \\ & =0.847 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ (2)
(b)	$\begin{aligned} & \mathrm{F}(0.60)=0.5040 \\ & \mathrm{~F}(0.59)=0.4908 \quad \text { both required } \quad \text { awrt } 0.5,0.49 \end{aligned}$	M1A1
	0.5 lies between therefore median value lies between 0.59 and 0.60	B1 (3)
(c)	$\mathrm{f}(x)=\left\{\begin{array}{lr} -3 x^{2}+4 x, & 0 \leq x \leq 1, \\ 0, & \text { otherwise } . \end{array} \quad\right. \text { attempt to differentiate, all correct }$	M1A1 (2)
(d)	$\int_{0}^{1} x \mathrm{f}(x) \mathrm{d} x=\int_{0}^{1}-3 x^{3}+4 x^{2} \mathrm{~d} x \quad$ attempt to integrate $x \mathrm{f}(x)$	M1
	$=\left[\frac{-3 x^{4}}{4}+\frac{4 x^{3}}{3}\right]_{0}^{1}$ sub in limits	M1
	$=\frac{7}{12}$ or $0.58 \dot{3}$ or 0.583 or equivalent fraction	A1
		(3)
(e)	$\frac{\mathrm{df}(x)}{\mathrm{d} x}=-6 x+4=0 \quad$ attempt to differentiate $\mathrm{f}(x)$ and equate to 0	M1
	$x=\frac{2}{3}$ or $0 . \dot{6}$ or 0.667	A1
		(2)
(f)	mean $<$ median $<$ mode, therefore negative skew. Any pair, cao	B1,B1
		Total 14

