6674 Further Pure Mathematics FP1 Mark Scheme

Question Number	Scheme	Marks
1.	(a) Method for finding $\mathrm{z}: \quad \mathrm{z}=\frac{-2 \pm \sqrt{4-68}}{2} \quad, \quad=\frac{-2 \pm \sqrt{64} i}{2}$ [Completing the square: $(z+1)^{2}+16=0, \quad z=-1 \pm \sqrt{16} i \quad$ M1,A1 $\mathrm{z}=-1 \pm 4 i \quad(a=-1, b= \pm 4)$ (b)	M1, A1 A1 (3) B1 $\sqrt{ }$ (1)
	Notes (a) First A 1 is unsimplified but requires i $-1 \pm 8 i$ only scores M1 unless intermediate step seen when M1A1 possible Correct answer with no working is full marks SC: If M0 awarded, $k \pm 4 i, k+4 i, k-4 i$ scores B1 (Epen M0A0A1) Use of $\mathrm{z}=a+\mathrm{i} b$ (i) $\mathrm{z}^{2}-2 \mathrm{az}+a^{2}+b^{2}=\mathrm{z}^{2}+2 \mathrm{z}+17=0$ and compare coefficients M1 $a^{2}+b^{2}=17 \text { and } \mathrm{a}=-1 ; \quad \mathrm{z}=-1 \pm 4 i \quad \mathrm{~A} 1, \mathrm{~A} 1$ (ii) $(a+\mathrm{i} b)^{2}+2(a+\mathrm{i} b)+17=0$ and compare coefficients $2 b(a+1)=0 \text { and } \quad a^{2}-b^{2}+2 a=-17, \quad a=-1 \quad \text { and } b= \pm 4 \quad \mathrm{~A} 1,$ A1 (b) Must be a conjugate pair. Allow: Coords marked at points or "correct" numbers on axes.(allow "graduations") (Ignore any lines drawn)	

$$
\begin{aligned}
& \text { (b) } \quad \sum_{1}^{n} r-\sum_{1}^{n} 1+\sum_{1}^{n}\left(\frac{1}{r}-\frac{1}{r+1}\right) \\
& =\quad \frac{n(n+1)}{2},(-) n,+\ldots \ldots \ldots \ldots \ldots \ldots+ \\
& \\
& {\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots \ldots \ldots . .\left(\frac{1}{n}-\frac{1}{n+1}\right)\right]=}
\end{aligned}
$$

Simplification of method of differences: $\quad 1-\frac{1}{n+1}$

$$
\left\{=\frac{n(n-1)}{2}+\left[1-\frac{1}{(n+1)}\right]\right\}
$$

Attempt single fraction: $=\frac{n(n+1)(n-1)+2 n}{2(n+1)} \quad$ (dep. prev. M1)

$$
=\frac{n\left(n^{2}+1\right)}{2(n+1)} \quad \text { or } \quad \frac{n^{3}+n}{2(n+1)}
$$

Alternative: Using Difference method on whole expression:

$$
\begin{aligned}
{[0+1} & \left.-\frac{1}{2}\right]+\left[1+\frac{1}{2}-\frac{1}{3}\right]+\left[2+\frac{1}{3}-\frac{1}{4}\right] \ldots \ldots .\left[n-1+\frac{1}{n}-\frac{1}{n+1}\right] \\
& =(1+2+3 \ldots \ldots \ldots+n-1), \quad+\left[\left(1-\frac{1}{n+1}\right)\right] \text { any form } \\
& =\frac{n(n-1)}{2}, \quad\left\{+\frac{n}{n+1}\right\} \\
& =\frac{n(n+1)(n-1)+2 n}{2(n+1)} \quad[\text { Attempt single fraction }] \\
& =\frac{n\left(n^{2}+1\right)}{2(n+1)} \text { or } \quad \frac{n^{3}+n}{2(n+1)}
\end{aligned}
$$

Notes:
First M mark is for use of method of differences and attempt at some simplification
First A mark is for simplified result of this method (no more than 2 terms)
Second M mark for attempt at forming single fraction, dependent on first M mark In alternative first B1 need not be added but need to see $1 \quad 2 \ldots \ldots . .(\mathrm{n}-1)$

Question Number	Scheme	Marks
5.	(a) $[(x>-2)]$: Attempt to solve $x^{2}-1=3(1-x)(x+2)$ $\left[4 x^{2}+3 x-7=0\right]$ $x=1, \quad \text { or }-\frac{7}{4}$ $[(x<-2)]:$ Attempt to solve $x^{2}-1=-3(1-x)(x+2)$ Solving $\begin{aligned} x+1 & =3 x+6 \quad\left(2 x^{2}+3 x-5=0\right) \\ x & =-\frac{5}{2} \end{aligned}$ (b) $\quad-\frac{7}{4}<x<1$ One part Both correct and enclosed $x<-\frac{5}{2} \quad\{$ Must be for $x<-2$ and only one value \}	M1 B1, A1 M1 M1dep A1 (6) M1 A1 B1 $\sqrt{ }$ (3) [9]
	Notes: "Squaring" in (a) If candidates do not notice the factor of $(x-1)^{2}$ they have quartic to solve; Squaring and finding quartic $=0 \quad\left[8 x^{4}+18 x^{3}-25 x^{2}-36 x+35=0\right]$ Finding one factor and factorising $(x-1)\left(8 x^{3}+26 x^{2}+x-35\right)=0$ M1 Finding one other factor and reducing other factor to quadratic, likely to be $(x-1)^{2}\left(8 x^{2}+34 x+35\right)=0$ $\text { Complete factorisation } \quad(x-1)^{2}(2 x+5)(4 x+7)=0$ [SecondM1 implies the first, if candidate starts there or cancels $(x-1)^{2}$] $x=1 \quad \mathrm{~B} 1, x=-7 / 4 \quad \mathrm{~A} 1, \quad x=-5 / 2 \mathrm{~A} 1$ $x=1$ allowed anywhere, no penalty in (b) In (b) correct answers seen with no working is independent of (a) (graphical calculator) mark as scheme. Only allow the accuracy mark if no other interval, in both parts \leq used penalise first time used	

(a) $f(2.0)=-0.30685 \ldots \ldots=-0.3069$

AWRT 3 d.p.

$f(2.5)=0.41629 \ldots \ldots .=0.4163 \quad$ both correct 4 d.p.
States change of sign, so root (between 2 and 2.5)
edexcel

B1 (3)

Note:

B1 gained if candidate's 2 values do show a change of sign and statement made
(b) $\alpha=(2)+\frac{|\mathrm{f}(2)|}{|\mathrm{f}(2)|+|\mathrm{f}(2.5)|} \times 0.5 \quad$ or $\quad \frac{\alpha-2}{2.5-\alpha}=\frac{|f(2.0)|}{|f(2.5)|}$ or equivalent

Or $\frac{x}{|\mathrm{f}(2)|}=\frac{0.5-x}{|\mathrm{f}(2.5)|}$ and x found

$$
=2.212 \mathrm{AWRT}
$$

(c) $\mathrm{f}(2.25)=0.06093 \ldots \ldots(\geq 3$ d.p. $)$ [Allow $\ln .2 .25+2.25-3]$

$$
\begin{array}{r}
\mathrm{f}^{\prime}(x)=\frac{1}{x}+1, \quad \mathrm{f}^{\prime}(2.25)=1 . \dot{4} \text { or } 1 \frac{4}{9} \text { or } \frac{13}{9} \quad \text { (allow 1.444) } \\
\alpha=2.25-\frac{\mathrm{f}(2.25)}{\mathrm{f}^{\prime}(2.25)}, \quad=2.20781 \ldots=2.208 \mathrm{AWRT}
\end{array}
$$

(d) $\mathrm{f}(2.2075)=, \quad\left\{-6.3 \ldots \times 10^{-4}\right\}$ $\mathrm{f}(2.2085)=, \quad\left\{8.1 \ldots \times 10^{-4}\right\}$
\therefore Correct values (≥ 1 s.f.), (root in interval) so root is 2.208 to 3 d.p.

A1 (2)

Notes:
c) First M in (c) is just for $\frac{1}{x}+1$

If no intermediate values seen B1M1A1M1A0 is possible for 2.209 or 2.21,
otherwise as scheme (B1 eased to award this if not evaluated)
(d) A1 requires values correct (≥ 1 s.f.) and statement (need not say change of sign)
M can be given for candidate's $f(2.2075)$ and $f(2.2085)$
Allow N-R applied at least twice more, but A1 requires 2.20794 or better and statement

MR in (c) 2.5 instead of 2.25 (Answer 2.203) award on ePen B0M1A0M1A1
7.

$$
\text { (a) } \begin{array}{rll}
y=x^{-2} & \left.\Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} t}=-2 x^{-3} \frac{\mathrm{~d} x}{\mathrm{~d} t} \quad \text { [Use of chain rule; need } \frac{d x}{d t}\right] \\
& \Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=-2 x^{-3} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}, & +6 x^{-4}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}
\end{array}
$$

$\left(\div\right.$ given d.e. by $\left.x^{4}\right) \quad \frac{2}{x^{3}} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-\frac{6}{x^{4}}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}=\frac{1}{x^{2}}-3$

$$
\text { becomes } \quad\left(-\frac{d^{2} y}{d t^{2}}=y-3\right) \quad \frac{d^{2} y}{d t^{2}}+y=3 \quad \mathbf{A G}
$$

A1 cso (5)
(b) Auxiliary equation: $m^{2}+1=0$ and produce Complementary Function $y=\ldots$

$$
(y)=A \cos t+B \sin t
$$

$$
\text { Particular integral: } y=3
$$

$\therefore \quad$ General solution: $(y)=A \cos t+B \sin t+3$
(c) $\quad \frac{1}{x^{2}}=A \cos t+B \sin t+3$

$$
x=\frac{1}{2}, t=0 \quad \Rightarrow \quad(4=A+3) \quad A=1
$$

Differentiating (to include $\frac{\mathrm{d} x}{\mathrm{~d} t}$): $\quad-2 x^{-3} \frac{d x}{d t}=-A \sin t+B \cos t$

$$
\begin{gathered}
\frac{\mathrm{d} x}{\mathrm{~d} t}=0, t=0 \quad \Rightarrow \quad(0=0+B) \quad B=0 \\
\therefore \quad \frac{1}{x^{2}}=3+\cos t \quad \text { so } \quad x=\frac{1}{\sqrt{3+\cos t}}
\end{gathered}
$$

(d) (Max. value of x when $\cos t=-1$) so $\max x=\frac{1}{\sqrt{2}}$ or AWRT 0.707

Notes: (See separate sheet for several variations)
(a) Second M1 is for attempt at product rule. (be generous)

Final A1 requires all working correct and sufficient "substitution" work
(b) Answer can be stated; M1 is implied by correct C.F. stated (allow θ for t)

A1 f.t. for candidates CF + PI
Allow $\mathrm{m}^{2}+\mathrm{m}=0$ and $\mathrm{m}^{2}-1=0$ for M1. Marks for (b) can be gained in (c)
(b) Second M : complete method to find other constant (This may involve solving two equations in A and B)
(a) $x=r \cos \theta=4 \sin \theta \cos ^{3} \theta$
$\frac{d x}{d \theta}=4 \cos ^{4} \theta-12 \cos ^{2} \theta \sin ^{2} \theta \quad$ any correct expression
Solving $\frac{d x}{d \theta}=0 \quad\left[\frac{d x}{d \theta}=0 \Rightarrow 4 \cos ^{2} \theta\left(\cos ^{2} \theta-3 \sin ^{2} \theta\right)=0\right]$ $\sin \theta=\frac{1}{2}$ or $\cos \theta=\frac{\sqrt{3}}{2}$ or $\tan \theta=\frac{1}{\sqrt{3}} \quad \Rightarrow \theta=\frac{\pi}{6}$

$$
r=4 \sin \frac{\pi}{6} \cos ^{2} \frac{\pi}{6}=\frac{3}{2} \quad \mathrm{AG}
$$

(b) $A=\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} r^{2} d \theta=\frac{1}{2} \cdot 16 \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sin ^{2} \theta \cos ^{4} \theta d \theta$

$$
\begin{aligned}
8 \sin ^{2} \theta \cos ^{4} \theta & =2 \cos ^{2} \theta\left(4 \sin ^{2} \theta \cos ^{2} \theta\right)=2 \cos ^{2} \theta \sin ^{2} 2 \theta \\
& =(\cos 2 \theta+1) \sin ^{2} 2 \theta \\
& =\cos 2 \theta \sin ^{2} 2 \theta+\frac{1-\cos 4 \theta}{2}=\text { Answer } \quad \text { AG }
\end{aligned}
$$

(c) Area $=\left[\frac{1}{6} \sin ^{3} 2 \theta+\frac{\theta}{2}-\frac{\sin 4 \theta}{8}\right]_{\left(\frac{\pi}{6}\right)}^{\left(\frac{\pi}{4}\right)} \quad$ (ignore limits)

$$
\begin{aligned}
& =\left(\frac{1}{6} \sin ^{3} \frac{\pi}{2}+\frac{\pi}{8}-\frac{\sin \pi}{8}\right)-\left(\frac{1}{6} \sin ^{3} \frac{\pi}{3}+\frac{\pi}{12}-\frac{\sin \frac{2 \pi}{8}}{8}\right) \quad \text { (sub. limits) } \\
& =\left(\frac{1}{6}+\frac{\pi}{8}\right)-\left(\frac{\sqrt{3}}{16}+\frac{\pi}{12}-\frac{\sqrt{3}}{16}\right)=\frac{1}{6},+\frac{\pi}{24} \text { both cao }
\end{aligned}
$$

Notes:
(a) So many ways x may be expressing e.g
$2 \sin 2 \theta \cos ^{2} \theta, \sin 2 \theta(1+\cos 2 \theta), \sin 2 \theta+(1 / 2) \sin 4 \theta$
leading to many results for $\frac{d x}{d \theta}$
Some relevant equations in solving

$$
\left[\left(1-4 \sin ^{2} \theta\right)=0, \quad\left(4 \cos ^{2} \theta-3\right)=0, \quad\left(1-3 \tan ^{2} \theta\right)=0, \cos 3 \theta=0\right]
$$

Showing that $\theta=\frac{\pi}{6}$ satisfies $\frac{d x}{d \theta}=0$, allow M1A1 providing $\frac{d x}{d \theta}$ correct
Starting with $\mathrm{x}=\mathrm{r} \sin \theta$ can gain M0M1M1 in (a)
(b) First M1 for use of double angle formula for $\sin 2 \mathrm{~A}$

Second M1 for use of $\cos 2 A=2 \cos ^{2} A-1$
Answer given: must be intermediate step, as shown, and no incorrect work
(c) For first M, of the form $a \sin ^{3} 2 \theta+\frac{\theta}{2} \pm b \sin 4 \theta$ (Allow if two of correct form)

On ePen the order of the As in answer is as written

