6663 Core Mathematics C1 Mark Scheme

Question Number	Scheme	Mark
1.	$\begin{array}{ll} 4 x^{3} \rightarrow k x^{2} \text { or } 2 x^{\frac{1}{2}} \rightarrow k x^{-\frac{1}{2}} \quad(k \text { a non-zero constant }) \\ 12 x^{2},+x^{-\frac{1}{2}} \ldots \ldots, \quad(-1 \rightarrow 0) \tag{4} \end{array}$	M1 A1, A1, B1
	Accept equivalent alternatives to $x^{-\frac{1}{2}}$, e.g. $\frac{1}{x^{1 / 2}}, \frac{1}{\sqrt{x}}, x^{-0.5}$. M1: $4 x^{3}$ 'differentiated' to give $k x^{2}$, or... $2 x^{\frac{1}{2}}$ 'differentiated' to give $k x^{-\frac{1}{2}}$ (but not for just $-1 \rightarrow 0$). $1^{\text {st }} \mathrm{A} 1: 12 x^{2} \quad$ (Do not allow just $3 \times 4 x^{2}$) $2^{\text {nd }} \mathrm{A} 1: x^{-\frac{1}{2}}$ or equivalent. (Do not allow just $\frac{1}{2} \times 2 x^{-\frac{1}{2}}$, but allow $1 x^{-\frac{1}{2}}$ or $\frac{2}{2} x^{-\frac{1}{2}}$). B1: -1 differentiated to give zero (or 'disappearing'). Can be given provided that at least one of the other terms has been changed. Adding an extra term, e.g. $+C$, is B 0 .	

Question Number	Scheme	Marks	
2.	(a) $6 \sqrt{ } 3$ $(a=6)$ (b) Expanding $(2-\sqrt{ } 3)^{2}$ to get 3 or 4 separate terms 7, $-4 \sqrt{ } 3$ $(b=7, c=-4)$	B1 M1 $\mathrm{A} 1, \mathrm{~A} 1$	(1) (3)
	(a) $\pm 6 \sqrt{ } 3$ also scores B1. (b) M1: The 3 or 4 terms may be wrong. $1^{\text {st }} \mathrm{A} 1$ for $7,2^{\text {nd }} \mathrm{A} 1$ for $-4 \sqrt{ } 3$. Correct answer $7-4 \sqrt{ } 3$ with no working scores all 3 marks. $7+4 \sqrt{ } 3$ with or without working scores M1 A1 A0. Other wrong answers with no working score no marks.		

Question Number	Scheme	Marks
3.	(a) Shape of $\mathrm{f}(x)$ Moved up \uparrow Asymptotes: $y=3$ $x=0$ (Allow " y-axis") $(y \neq 3$ is $\mathrm{B} 0, x \neq 0$ is B 0$)$. (b) $\frac{1}{x}+3=0$ No variations accepted. $x=-\frac{1}{3}($ or $-0.33 \ldots)$ Decimal answer requires at least 2 d.p.	B1 M1 B1 B1 (4) M1 A1 (2) 6
	(a) B1: Shape requires both branches and no obvious "overlap" with the asymptotes (see below), but otherwise this mark is awarded generously. The curve may, e.g., bend away from the asymptote a little at the end. Sufficient curve must be seen to suggest the asymptotic behaviour, both horizontal and vertical. M1: Evidence of an upward translation parallel to the y-axis. The shape of the graph can be wrong, but the complete graph (both branches if they have 2 branches) must be translated upwards. This mark can be awarded generously by implication where the graph drawn is an upward translation of another standard curve (but not a straight line). The B marks for asymptote equations are independent of the graph. Ignore extra asymptote equations, if seen. (b) Correct answer with no working scores both marks. The answer may be seen on the sketch in part (a). Ignore any attempts to find an intersection with the y-axis. (a) This scores B0 (clear overlap with horiz. asymp.) M1 (Upward translation... bod that both branches have been translated). original curve is seen, to show upward translation.	

Question Number	Scheme	Marks
4.	$(x-2)^{2}=x^{2}-4 x+4$ or $(y+2)^{2}=y^{2}+4 y+4$ M: 3 or 4 terms $(x-2)^{2}+x^{2}=10$ or $y^{2}+(y+2)^{2}=10$ M: Substitute $2 x^{2}-4 x-6=0$ or $2 y^{2}+4 y-6=0$ Correct 3 terms $(x-3)(x+1)=0, \quad x=\ldots$ or $(y+3)(y-1)=0, \quad y=\ldots$ (The above factorisations may also appear as $(2 x-6)(x+1)$ or equivalent). $\begin{array}{lllll} x=3 & x=-1 & \text { or } & y=-3 & y=1 \\ y=1 & y=-3 & \text { or } & x=-1 & x=3 \tag{7} \end{array}$ (Allow equivalent fractions such as: $x=\frac{6}{2}$ for $x=3$).	M1 M1 A1 M1 A1 M1 A1
	$1^{\text {st }} \mathrm{M}$: 'Squaring a bracket', needs 3 or 4 terms, one of which must be an x^{2} or y^{2} term. $2^{\text {nd }} M$: Substituting to get an equation in one variable (awarded generously). $1^{\text {st }} \mathrm{A}$: Accept equivalent forms, e.g. $2 x^{2}-4 x=6$. $3^{\text {rd }} \mathrm{M}$: Attempting to solve a 3 -term quadratic, to get 2 solutions. $4^{\text {th }} \mathrm{M}$: Attempting at least one y value (or x value). If y solutions are given as x values, or vice-versa, penalise at the end, so that it is possible to score M1 M1A1 M1 A1 M0 A0. Strict "pairing of values" at the end is not required. "Non-algebraic" solutions: No working, and only one correct solution pair found (e.g. $x=3, y=1$): M0 M0 A0 M0 A0 M1 A0 No working, and both correct solution pairs found, but not demonstrated: M0 M0 A0 M1 A1 M1 A1 Both correct solution pairs found, and demonstrated, perhaps in a table of values: Full marks Squaring individual terms: e.g.	

Question Number	Scheme	Marks
6.	（a）$(4+3 \sqrt{ } x)(4+3 \sqrt{ } x)$ seen，or a numerical value of k seen，$(k \neq 0)$ ． （The k value need not be explicitly stated．．．see below）． $16+24 \sqrt{ } x+9 x$, or $k=24$ （b） $16 \rightarrow c x$ or $k x^{1 / 2} \rightarrow c x^{3 / 2}$ or $9 x \rightarrow c x^{2}$ $\int(16+24 \sqrt{ } x+9 x) \mathrm{d} x=16 x+\frac{9 x^{2}}{2}+C,+16 x^{3 / 2}$	M1 A1cso M1 A1，A1ft (3) $\mathbf{5}$
	（a）e．g．$(4+3 \sqrt{ } x)(4+3 \sqrt{ } x)$ alone scores M1 A0，（but not $(4+3 \sqrt{ } x)^{2}$ alone）． e．g $16+12 \sqrt{ } x+9 x$ scores M1 A0． $k=24$ or $16+24 \sqrt{ } x+9 x$ ，with no further evidence，scores full marks M1 A1． Correct solution only（cso）：any wrong working seen loses the A mark． （b）A1： $16 x+\frac{9 x^{2}}{2}+C . \quad$ Allow 4.5 or $4 \frac{1}{2}$ as equivalent to $\frac{9}{2}$ ． A1ft：$\frac{2 k}{3} x^{3 / 2}$（candidate＇s value of k ，or general k ）． For this final mark，allow for example $\frac{48}{3}$ as equivalent to 16 ，but do not allow unsimplified＂double fractions＂such as $\frac{24}{(3 / 2)}$ ，and do not allow unsimplified＂products＂such as $\frac{2}{3} \times 24$ ． A single term is required，e．g． $8 x^{3 / 2}+8 x^{3 / 2}$ is not enough． An otherwise correct solution with，say，C missing，followed by an incorrect solution including $+C$ can be awarded full marks（isw，but allowing the C to appear at any stage）．	

Question Number	Scheme	Marks
9.	（a）Recognising arithmetic series with first term 4 and common difference 3 ． （If not scored here，this mark may be given if seen elsewhere in the solution）． $a+(n-1) d=4+3(n-1) \quad(=3 n+1)$ （b）$S_{n}=\frac{n}{2}\{2 a+(n-1) d\}=\frac{10}{2}\{8+(10-1) \times 3\}, \quad=175$ ， （c）$S_{k}<1750: \frac{k}{2}\{8+3(k-1)\}<1750\left(\right.$ or $\left.S_{k+1}>1750: \frac{k+1}{2}\{8+3 k\}>1750\right)$ $3 k^{2}+5 k-3500<0\left(\text { or } 3 k^{2}+11 k-3492>0\right)$ （Allow equivalent 3 －term versions such as $3 k^{2}+5 k=3500$ ）． $(3 k-100)(k+35)<0 \quad$ Requires use of correct inequality throughout．$\left({ }^{*}\right)$ （d）$\frac{100}{3}$ or equiv．seen $\left(\right.$ or $\left.\frac{97}{3}\right), \quad k=33$（and no other values）	
	（a）B1：Usually identified by $a=4$ and $d=3$ ． M1：Attempted use of term formula for arithmetic series，or．．． answer in the form（ $3 n+$ constant $)$ ，where the constant is a non－zero value Answer for（a）does not require simplification，and a correct answer without working scores all 3 marks． （b）M1：Use of correct sum formula with $n=9,10$ or 11 ． A1：Correct，perhaps unsimplified，numerical version．A1： 175 Alternative：（Listing and summing terms）． M1：Summing 9， 10 or 11 terms．（At least $1^{\text {st }}, 2^{\text {nd }}$ and last terms must be seen）． A1：Correct terms（perhaps implied by last term 31）． A1： 175 Alternative：（Listing all sums） M1：Listing 9， 10 or 11 sums．（At least $4,7, \ldots$. ．＂last＂）． A1：Correct sums，correct finishing value 175 ． A1： 175 Alternative：（Using last term）． M1：Using $S_{n}=\frac{n}{2}(a+l)$ with T_{9}, T_{10} or T_{11} as the last term． A1：Correct numerical version $\frac{10}{2}(4+31)$ ． A1： 175 Correct answer with no working scores 1 mark： $1,0,0$ ． （c）For the first 3 marks，allow any inequality sign，or equals． $1^{\text {st }} \mathrm{M}$ ：Use of correct sum formula to form inequality or equation in k ， with the 1750 ． $2^{\text {nd }} \mathrm{M}$ ：（Dependent on $1^{\text {st }} \mathrm{M}$ ）．Form 3－term quadratic in k ． $1^{\text {st }} \mathrm{A}$ ：Correct 3 terms． Allow credit for part（c）if valid work is seen in part（d）． （d）Allow both marks for $k=33$ seen without working． Working for part（d）must be seen in part（d），not part（c）．	

\#

