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1. The complex numbers z and w satisfy the simultaneous equations

2z + iw = –1,

      z – w = 3 + 3i.

(a) Use algebra to find z, giving your answers in the form a + ib, where a and b are real.
(4)

(b) Calculate arg z, giving your answer in radians to 2 decimal places.
(2)

2. Figure 1

Figure 1 shows a curve C with polar equation r = 4a cos 2, 0   
4


, and a line m with polar 

equation  = 
8


. The shaded region, shown in Figure 1, is bounded by C and m. Use calculus to 

show that the area of the shaded region is 2
1 a2( – 2).

(7)
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3. Given that 3x sin 2x is a particular integral of the differential equation

2

2

d

d

x

y
+ 4y = k cos 2x,

where k is a constant,

(a) calculate the value of k,
(4)

(b) find the particular solution of the differential equation for which at x = 0, y = 2, and for 

which at x = 
4


, y =

2


.

(4)

4. Given that 3 – 2i is a solution of the equation

x4 – 6x3 + 19x2 – 36x + 78 = 0,

(a) solve the equation completely,
(7)

(b) show on a single Argand diagram the four points that represent the roots of the equation.
(2)

5. Given that for all real values of r,

(2r + 1)3 – (2r – 1)3 = Ar2 + B,

where A and B are constants,

(a) find the value of A and the value of B.
(2)

(b) Hence, or otherwise, prove that 


n

r

r
1

2 = 
6

1
n(n + 1)(2n + 1).  

(5)

(c) Calculate 



40

1

2)13(
r

r .

(3)
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6.       f(x) = 0.25x – 2 + 4 sin x.

(a) Show that the equation f(x) = 0 has a root  between x = 0.24 and x = 0.28.
(2)

(b) Starting with the interval [0.24, 0.28], use interval bisection three times to find an interval of 
width 0.005 which contains .

(3)

The equation f(x) = 0 also has a root  between x = 10.75 and x = 11.25.

(c) Taking 11 as a first approximation to , use the Newton-Raphson process on f(x) once to 
obtain a second approximation to . Give your answer to 2 decimal places.

(6)

7. (a) Use algebra to find the exact solutions of the equation

2x2 + x – 6 = 6 – 3x.
(6)

(b) On the same diagram, sketch the curve with equation y = 2x2 + x – 6 and the line with 
equation y = 6 – 3x. 

(3)

(c) Find the set of values of x for which

2x2 + x – 6 > 6 – 3x.
(3)

8. During an industrial process, the mass of salt, S kg, dissolved in a liquid t minutes after the 
process begins is modelled by the differential equation

t

S

d

d
+ 

t

S

120

2
= 

4

1
,    0  t < 120.

Given that S = 6 when t = 0,

(a) find S in terms of t,
(8)

(b) calculate the maximum mass of salt that the model predicts will be dissolved in the liquid at 
any one time during the process.

(4)
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1.
The complex numbers z and w satisfy the simultaneous equations

2z + iw = –1,









      z – w = 3 + 3i.



(a)
Use algebra to find z, giving your answers in the form a + ib, where a and b are real.


(4)



(b)
Calculate arg z, giving your answer in radians to 2 decimal places.


(2)



2.







Figure 1




Figure 1 shows a curve C with polar equation r = 4a cos 2(, 0 ( ( ( 
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3. 
Given that 3x sin 2x is a particular integral of the differential equation
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where k is a constant,



(a)
calculate the value of k,


(4)


(b)
find the particular solution of the differential equation for which at x = 0, y = 2, and for which at x = 
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4.
Given that 3 – 2i is a solution of the equation


x4 – 6x3 + 19x2 – 36x + 78 = 0,


(a)
solve the equation completely,

 (7)



(b)
show on a single Argand diagram the four points that represent the roots of the equation.

 (2)


5.
Given that for all real values of r,

(2r + 1)3 – (2r – 1)3 = Ar2 + B,



where A and B are constants,



(a)
find the value of A and the value of B.


(2)



(b)
Hence, or otherwise, prove that 
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n(n + 1)(2n + 1).  
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(c)
Calculate 
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6.




 
      f(x) = 0.25x – 2 + 4 sin (x.


(a)
Show that the equation f(x) = 0 has a root ( between x = 0.24 and x = 0.28.

 (2)



(b)
Starting with the interval [0.24, 0.28], use interval bisection three times to find an interval of width 0.005 which contains (.

(3)



The equation f(x) = 0 also has a root (  between x = 10.75 and x = 11.25.



(c)
Taking 11 as a first approximation to (, use the Newton-Raphson process on f(x) once to obtain a second approximation to (. Give your answer to 2 decimal places.


 (6)




7.
(a)
Use algebra to find the exact solutions of the equation


(2x2 + x – 6( = 6 – 3x.

 (6)



(b)
On the same diagram, sketch the curve with equation y = (2x2 + x – 6( and the line with equation y = 6 – 3x.   

(3)


(c)
Find the set of values of x for which

(2x2 + x – 6( > 6 – 3x.

 (3)




8.
During an industrial process, the mass of salt, S kg, dissolved in a liquid t minutes after the process begins is modelled by the differential equation
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Given that S = 6 when t = 0,



(a)
find S in terms of t,


(8)



(b)
calculate the maximum mass of salt that the model predicts will be dissolved in the liquid at any one time during the process.


(4) 
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