

**GCE** 

**Edexcel GCE** 

**Mathematics** 

Core Mathematics C1 (6663)

June 2006

advancing learning, changing lives

Mark Scheme (Results)

# Mathematics

http://www.xtremepapers.net



# June 2006 6663 Core Mathematics C1 Mark Scheme

|                    | mark ourions                                                                                      |       |
|--------------------|---------------------------------------------------------------------------------------------------|-------|
| Question<br>number | Scheme                                                                                            | Marks |
| 1.                 | $\frac{6x^3}{3} + 2x + \frac{x^{\frac{1}{2}}}{\frac{1}{2}}  (+c)$                                 | M1    |
|                    |                                                                                                   | A1    |
|                    | $=2x^3 + 2x + 2x^{\frac{1}{2}}$                                                                   | A1    |
|                    | +c                                                                                                | B1    |
|                    |                                                                                                   | 4     |
|                    | M1 for some attempt to integrate $x^n \to x^{n+1}$                                                |       |
|                    | 1 <sup>st</sup> A1 for either $\frac{6}{3}x^3$ or $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or better |       |
|                    | $2^{\text{nd}}$ A1 for all terms in x correct. Allow $2\sqrt{x}$ and $2x^1$ .                     |       |
|                    | B1 for $+ c$ , when first seen with a changed expression.                                         |       |
|                    |                                                                                                   |       |
|                    |                                                                                                   |       |
|                    |                                                                                                   |       |
|                    |                                                                                                   |       |
|                    |                                                                                                   |       |
|                    |                                                                                                   |       |
|                    |                                                                                                   |       |
|                    |                                                                                                   |       |
|                    |                                                                                                   |       |
|                    |                                                                                                   |       |
|                    |                                                                                                   |       |

| Question<br>number |                     | Marks                                                                                                      |             |
|--------------------|---------------------|------------------------------------------------------------------------------------------------------------|-------------|
| 2.                 | Critical Val        | <u>ues</u>                                                                                                 |             |
|                    | $(x\pm a)(x\pm b)$  | (a) with $ab=18$ or $x = \frac{7 \pm \sqrt{49 - 72}}{2}$ or $(x - \frac{7}{2})^2 \pm (\frac{7}{2})^2 - 18$ | M1          |
|                    | (x-9)(x+2)          | 2) or $x = \frac{7 \pm 11}{2}$ or $x = \frac{7}{2} \pm \frac{11}{2}$                                       | A1          |
|                    | Solving Inec        | quality $x > 9$ or $x < -2$ Choosing "outside"                                                             | M1          |
|                    |                     |                                                                                                            | A1 4        |
|                    | 1 <sup>st</sup> M1  | For attempting to find critical values.                                                                    |             |
|                    |                     | Factors alone are OK for M1, $x =$ appearing somewhere for the for                                         | mula and as |
|                    |                     | written for completing the square                                                                          |             |
|                    | 1 <sup>st</sup> A1. | Factors alone are OK . Formula or completing the square need $x = x$                                       | as written. |
|                    | 2 <sup>nd</sup> M1  | For choosing outside region. Can f.t. their critical values.                                               |             |
|                    |                     | They must have two different critical values.                                                              |             |
|                    |                     | -2 > x > 9 is M1A0 but ignore if it follows a correct version                                              |             |
|                    |                     | -2 < x < 9 is M0A0 whatever the diagram looks like.                                                        |             |
|                    | 2 <sup>nd</sup> A1  | Use of $\geq$ in final answer gets A0                                                                      |             |
|                    |                     |                                                                                                            |             |
|                    |                     |                                                                                                            |             |
|                    |                     |                                                                                                            |             |
|                    |                     |                                                                                                            |             |

| Question<br>number |                                         | Scheme                                                                             | N.     | <b>I</b> arks |   |
|--------------------|-----------------------------------------|------------------------------------------------------------------------------------|--------|---------------|---|
| 3.                 | (a) y                                   | U shape touching x-axis                                                            | B1     |               |   |
|                    | 1                                       | (-3,0)                                                                             | B1     |               |   |
|                    |                                         | (0,9)                                                                              | B1     |               |   |
|                    | -3                                      | /9 x                                                                               |        | (3)           |   |
|                    | (b) y                                   | Translated parallel to y-axis up                                                   | M1     |               |   |
|                    |                                         | $/9+k \qquad (0,9+k)$                                                              | B1f.t. |               |   |
|                    |                                         |                                                                                    |        | (2)           |   |
|                    |                                         | x x                                                                                |        |               | 5 |
| (a)                | 2 <sup>nd</sup> B1                      | They can score this even if other intersections with the <i>x</i> -axis are given. |        |               |   |
|                    | 2 <sup>nd</sup> B1 & 3 <sup>rd</sup> B1 | The -3 and 9 can appear on the sketch as shown                                     |        |               |   |
| (b)                | M1                                      | Follow their curve in (a) up only.                                                 |        |               |   |
|                    |                                         | If it is not obvious do not give it. e.g. if it cuts y-axis in (a)                 |        |               |   |
|                    |                                         | but doesn't in (b) then it is M0.                                                  |        |               |   |
|                    | B1f.t.                                  | Follow through their 9                                                             |        |               |   |

| Question<br>number |                                                      | Scheme                                                                                                                                                                  | Mark         | s   |
|--------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| 4. (a)             | $a_2 = 4$ $a_3 = 3 \times a_2 - 5$ $a_4 = 3a_4 - 56$ | 5 = 7                                                                                                                                                                   | B1<br>B1f.t. |     |
| (b)                |                                                      |                                                                                                                                                                         | M1           | (2) |
|                    | 3 + 4 + 7 + 10                                       | 6 + 43                                                                                                                                                                  | M1           |     |
|                    | = 73                                                 |                                                                                                                                                                         | A1c.a.o.     | (3) |
|                    |                                                      |                                                                                                                                                                         |              | 5   |
| (a)                | 2 <sup>nd</sup> B1f.t.                               | Follow through their $a_2$ but it must be a value. $3\times4-5$ is B0 Give wherever it is first seen.                                                                   |              |     |
| (b)                | 1 <sup>st</sup> M1                                   | For two further attempts to use of $a_{n+1} = 3a_n - 5$ , wherever seen. Condone arithmetic slips                                                                       |              |     |
|                    | 2 <sup>nd</sup> M1                                   | For attempting to add 5 relevant terms (i.e. terms derived from an attempt to use the recurrence formula) or an expression. Follow through their values for $a_2 - a_5$ |              |     |
|                    |                                                      | Use of formulae for arithmetic series is M0A0 but could get $1^{st}$ M1 if $a_4$ and $a_5$ are correctly attempted.                                                     |              |     |
|                    |                                                      |                                                                                                                                                                         |              |     |
|                    |                                                      |                                                                                                                                                                         |              |     |
|                    |                                                      |                                                                                                                                                                         |              |     |
|                    |                                                      |                                                                                                                                                                         |              |     |
|                    |                                                      |                                                                                                                                                                         |              |     |

| Question<br>number |                                                             | Scheme                                                                                      | Marks              |
|--------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|
| 5. (a)             | $(y = x^4 + 6x^{\frac{1}{2}})$                              | $\Rightarrow y' = 3 + 3x^{-\frac{1}{2}}$ or $4x^3 + \frac{3}{\sqrt{x}}$                     | M1A1A1 (3)         |
| (b)                | $(x+4)^2 = x^2 - \frac{(x+4)^2}{x} = x + \frac{(x+4)^2}{x}$ | +8 <i>x</i> +16                                                                             | M1                 |
|                    | $\frac{(x+4)}{x} = x +$                                     | $-8 + 16x^{-1}$ (allow 4+4 for 8)                                                           | A1                 |
|                    | $(y = \frac{\left(x+4\right)^2}{x}$                         | ⇒ $y' = 1 - 16x^{-2}$ o.e.                                                                  | M1A1 (4) 7         |
| (a)                | M1                                                          | For some attempt to differentiate $x^n \to x^{n-1}$                                         | ·                  |
|                    | 1 <sup>st</sup> A1                                          | For one correct term as printed.                                                            |                    |
|                    | 2 <sup>nd</sup> A1                                          | For both terms correct as printed.                                                          |                    |
|                    |                                                             | $4x^3 + 3x^{-\frac{1}{2}} + c$ scores M1A1A0                                                |                    |
| (b)                | 1 <sup>st</sup> M1                                          | For attempt to expand $(x+4)^2$ , must have $x^2$ , $x$ , $x^0$ terms and at lea            | st 2 correct       |
|                    |                                                             | e.g. $x^2 + 8x + 8$ or $x^2 + 2x + 16$                                                      |                    |
|                    | 1 <sup>st</sup> A1                                          | Correct expression for $\frac{(x+4)^2}{x}$ . As printed but allow $\frac{16}{x}$ and $8x^0$ |                    |
|                    | 2 <sup>nd</sup> M1                                          | For some correct differentiation, any term. Can follow through the                          | ir simplification. |
|                    |                                                             | N.B. $\frac{x^2 + 8x + 16}{x}$ giving rise to $(2x + 8)/1$ is M0A0                          |                    |
| ALT                | Product or Qu                                               | notient rule (If in doubt send to review)                                                   |                    |
|                    | M2                                                          | For correct use of product or quotient rule. Apply usual rules on for                       | ormulae.           |
|                    | 1 <sup>st</sup> A1                                          | For $\frac{2(x+4)}{x}$ or $\frac{2x(x+4)}{x^2}$                                             |                    |
|                    | 2 <sup>nd</sup> A1                                          | for $-\frac{\left(x+4\right)^2}{x^2}$                                                       |                    |

| Question<br>number | Scheme                                                                                                                                                                                                            | Mark          | TS              |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|
|                    | $16 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^{2}  \text{or } 16 - 3$ $= 13$                                                                                                                                           | M1<br>A1c.a.o | (2)             |
| (b)                | $\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$                                                                                                                                                      | M1            |                 |
|                    | $\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$ $= \frac{26(4-\sqrt{3})}{13} = \frac{8-2\sqrt{3}}{13}  \text{or}  8+(-2)\sqrt{3}  \text{or}  a=8 \text{ and } b=-2$                                  | A1            | (2)<br><b>4</b> |
| (a)                | M1 For 4 terms, at least 3 correct<br>e.g. $8 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^2$ or $16 \pm 8\sqrt{3} - (\sqrt{3})^2$ or $16 + 3$<br>$4^2$ instead of 16 is OK<br>$(4 + \sqrt{3})(4 + \sqrt{3})$ scores M0A0 |               |                 |
| (b)                | M1 For a correct attempt to rationalise the denominator Can be implied $NB = \frac{-4 + \sqrt{3}}{-4 + \sqrt{3}}  \text{is OK}$                                                                                   |               |                 |

| Question<br>number |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scheme                                                               |                        | Marks         |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|---------------|
| 7.                 | a+(n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (a-1)d = k                                                           | k = 9  or  11          | M1            |
|                    | $(u_{11} =) a + 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0d = 9                                                               |                        | A1c.a.o.      |
|                    | $\frac{n}{2}[2a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $+(n-1)d$ ] = 77 or $\frac{(a+l)}{2} \times n = 77$                  | l = 9  or  11          | M1            |
|                    | $(S_{11} =) \ \frac{11}{2}(2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(a+10d) = 77$ or $\frac{(a+9)}{2} \times 11 = 77$                   |                        | A1            |
|                    | $e.g. \ a+10d = a+5d =$ | or $a + 9 = 14$                                                      |                        | M1            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a = 5 and $d = 0.4$ or exact equivalent                              |                        | A1 A1 7       |
|                    | 1 <sup>st</sup> M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Use of $u_n$ to form a linear equation in $a$ and $d$ .              | + <i>nd</i> =9 is M0A0 | ,             |
|                    | 1 <sup>st</sup> A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | For $a + 10d = 9$ .                                                  |                        |               |
|                    | $2^{nd} M1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Use of $S_n$ to form an equation for $a$ and $d$ (LHS)               | or in a (RHS)          |               |
|                    | 2 <sup>nd</sup> A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A correct equation based on $S_n$ .                                  |                        |               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For $1^{st}$ 2 Ms they must write $n$ or use $n = 11$ .              |                        |               |
|                    | 3 <sup>rd</sup> M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Solving (LHS simultaneously) or (RHS a linear of                     | equation in a)         |               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Must lead to $a = \dots$ or $d = \dots$ and depends on or            | ne previous M          |               |
|                    | 3 <sup>rd</sup> A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for $a = 5$                                                          |                        |               |
|                    | 4 <sup>th</sup> A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for $d = 0.4$ (o.e.)                                                 |                        |               |
|                    | ALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Uses $\frac{(a+l)}{2} \times n = 77$ to get $a = 5$ , gets second an | d third M1A1 i.e.      | 4/7           |
|                    | Then uses $\frac{n}{2}[2a+(n-1)d]=77$ to get d, gets 1 <sup>st</sup> M1A1 and 4 <sup>th</sup> A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                        |               |
|                    | MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Consistent MR of 11 for 9 leading to $a = 3$ , $d = 0$               | 0.8 scores M1A0M       | 1A0M1A1ftA1ft |

| Question<br>number | Scheme                                                                                                                                       | Marks                                                                                                               |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| 8. (a)             | $b^2 - 4ac = 4p^2 - 4(3p + 4) = 4p^2 - 12p - 16 (=0)$                                                                                        | M1, A1                                                                                                              |  |  |
|                    | $b^{2} - 4ac = 4p^{2} - 4(3p + 4) = 4p^{2} - 12p - 16 (=0)$ or $(x+p)^{2} - p^{2} + (3p+4) = 0 \implies p^{2} - 3p - 4(=0)$ $(p-4)(p+1) = 0$ |                                                                                                                     |  |  |
|                    |                                                                                                                                              | M1                                                                                                                  |  |  |
|                    | p = (-1  or) 4                                                                                                                               | A1c.s.o. (4)                                                                                                        |  |  |
| (b)                | $x = \frac{-b}{2a}$ or $(x+p)(x+p) = 0 \implies x =$                                                                                         | M1                                                                                                                  |  |  |
|                    | x (= -p) = -4                                                                                                                                | A1f.t. (2)                                                                                                          |  |  |
|                    |                                                                                                                                              | 6                                                                                                                   |  |  |
| (a)                | 1 <sup>st</sup> M1 For use of $b^2 - 4ac$ or a full attempt to complete the square $b^2 - 4ac$                                               | eading to a 3TQ in <i>p</i> .                                                                                       |  |  |
|                    | May use $b^2 = 4ac$ . One of b or c must be correct.                                                                                         |                                                                                                                     |  |  |
|                    | 1 <sup>st</sup> A1 For a correct 3TQ in $p$ . Condone missing "=0" but all 3 terms                                                           | must be on one side.                                                                                                |  |  |
|                    | $2^{\text{nd}}$ M1 For attempt to solve their 3TQ leading to $p =$                                                                           |                                                                                                                     |  |  |
|                    | $2^{\text{nd}} \text{ A1}$ For $p = 4$ (ignore $p = -1$ ).                                                                                   |                                                                                                                     |  |  |
|                    | $b^2 = 4ac$ leading to $p^2 = 4(3p + 4)$ and then "spotting" $p = 4$                                                                         | scores 4/4.                                                                                                         |  |  |
| (b)                | M1 For a full method leading to a repeated root $x =$                                                                                        |                                                                                                                     |  |  |
|                    | A1f.t. For $x = -4$ (- their $p$ )                                                                                                           |                                                                                                                     |  |  |
|                    | Trial and Improvement                                                                                                                        |                                                                                                                     |  |  |
|                    | M2 For substituting values of $p$ into the equation and attempting t (Really need to get to $p = 4$ or -1)                                   | For substituting values of $p$ into the equation and attempting to factorize. (Really need to get to $p = 4$ or -1) |  |  |
|                    | A2c.s.o. Achieve $p = 4$ . Don't give without valid method being seen.                                                                       |                                                                                                                     |  |  |
|                    |                                                                                                                                              |                                                                                                                     |  |  |

| Question<br>number | Scheme                                                                                            | Marks              |  |
|--------------------|---------------------------------------------------------------------------------------------------|--------------------|--|
| 9. (a)             | $f(x) = x[(x-6)(x-2)+3]$ or $x^3 - 6x^2 - 2x^2 + 12x + 3x = x($                                   | M1                 |  |
|                    | $f(x) = x(x^2 - 8x + 15)$ $b = -8 \text{ or } c = 15$                                             | A1                 |  |
|                    | both and $a = 1$                                                                                  | A1 (3)             |  |
| (b)                | $(x^2 - 8x + 15) = (x - 5)(x - 3)$                                                                | M1                 |  |
|                    | f(x) = x(x-5)(x-3)                                                                                | A1 (2)             |  |
| (c)                |                                                                                                   |                    |  |
|                    | y Shape                                                                                           | B1                 |  |
|                    | their 3 or their 5                                                                                | B1f.t.             |  |
|                    | $\frac{\text{both their 3 and their 5}}{\text{and (0,0) by implication}}$                         | B1f.t. (3)         |  |
|                    |                                                                                                   | 8                  |  |
| (a)                | M1 for a correct method to get the factor of $x$ . $x$ ( as printed is the minimum.               |                    |  |
|                    | $1^{\text{st}} \text{ A1 for } b = -8 \text{ or } c = 15.$                                        |                    |  |
|                    | -8 comes from -6-2 and must be coefficient of $x$ , and 15 from 6x2+3 and m                       | ust have no xs.    |  |
|                    | $2^{\text{nd}}$ A1 for $a = 1$ , $b = -8$ and $c = 15$ . Must have $x(x^2 - 8x + 15)$ .           |                    |  |
| (b)                | M1 for attempt to factorise their 3TQ from part (a).                                              |                    |  |
|                    | A1 for all 3 terms correct. They must include the $x$ .                                           |                    |  |
|                    | For part (c) they must have at most 2 non-zero roots of their $f(x) = 0$ to ft the                | eir 3 and their 5. |  |
| (c)                | 1 <sup>st</sup> B1 for correct shape (i.e. from bottom left to top right and two turning points.) |                    |  |
|                    | 2 <sup>nd</sup> B1f.t. for crossing at their 3 or their 5 indicated on graph or in text.          |                    |  |
|                    | 3 <sup>rd</sup> B1f.t. if graph passes through (0, 0) [needn't be marked] and both their 3        | 3 and their 5.     |  |

| Question<br>number |                                                                                          | Scheme                                                                                                 |                                                                                                                                                                                                                                              | Marks                               |     |
|--------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----|
| 10.(a)             | $f(x) = \frac{2x^2}{2} + \frac{3}{2}$                                                    | $\frac{3x^{-1}}{-1}(+c)$                                                                               | $-\frac{3}{x}$ is OK                                                                                                                                                                                                                         | M1A1                                |     |
|                    | $(3,7\frac{1}{2})$ gives                                                                 | $\frac{15}{2} = 9 - \frac{3}{3} + c$                                                                   | $3^2$ or $3^{-1}$ are OK instead of 9 or $\frac{1}{3}$                                                                                                                                                                                       | M1A1f.t.                            |     |
|                    |                                                                                          |                                                                                                        |                                                                                                                                                                                                                                              | A1 (                                | (5) |
| (b)                | $f(-2) = 4 + \frac{3}{2}$                                                                | $-\frac{1}{2}$ (*)                                                                                     |                                                                                                                                                                                                                                              | B1c.s.o.                            | (1) |
| (c)                | $m = -4 + \frac{3}{4}$ ,                                                                 | = -3.25                                                                                                |                                                                                                                                                                                                                                              | M1,A1                               |     |
|                    | Equation of ta $4y + 13x + 6 = 0$                                                        | engent is: $y - 5 = -3.25(x + 2)$                                                                      | o.e.                                                                                                                                                                                                                                         | M1<br>A1 (4)                        |     |
|                    |                                                                                          |                                                                                                        |                                                                                                                                                                                                                                              |                                     | 10  |
| (a)                | 1 <sup>st</sup> M1<br>1 <sup>st</sup> A1<br>2 <sup>nd</sup> M1<br>2 <sup>nd</sup> A1f.t. | substitution. No $+c$ is M0. So for a correct equation for $c$ . For fraction/fraction and signs (e.g. | etter. Ignore $(+c)$ here. Form an equation for $c$ . There must be me changes in $x$ terms of function ne follow through their integration. They $x - c$ to $x - c$ here. | eded.  must tidy up                 | t   |
| (b)                | B1cso                                                                                    | If $(-2, 5)$ is used to find $c$ in $(a)$                                                              | B0 here unless they verify $f(3)=7.5$ .                                                                                                                                                                                                      |                                     |     |
| (c)                | 1 <sup>st</sup> M1                                                                       | for attempting $m = f'(\pm 2)$                                                                         |                                                                                                                                                                                                                                              |                                     |     |
|                    | 1 <sup>st</sup> A1                                                                       | for $-\frac{13}{4}$ or $-3.25$                                                                         |                                                                                                                                                                                                                                              |                                     |     |
|                    | 2 <sup>nd</sup> M1                                                                       | for attempting equation of tang                                                                        | gent at (-2, 5), f.t. their m, based on $\frac{d}{dt}$                                                                                                                                                                                       | $\frac{\mathrm{d}y}{\mathrm{d}x}$ . |     |
|                    | 2 <sup>nd</sup> A1                                                                       | o.e. must have $a$ , $b$ and $c$ integer                                                               | ers and = 0.                                                                                                                                                                                                                                 |                                     |     |
|                    |                                                                                          | Treat (a) and (b) together as a l                                                                      | oatch of 6 marks.                                                                                                                                                                                                                            |                                     |     |

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                                                            | Marks         |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| 11.(a)             | $m = \frac{8-2}{11+1}  (=\frac{1}{2})$                                                                                                                                                                                                                                                                                                                            | M1 A1         |  |
|                    | $y-2=\frac{1}{2}(x-1)$ or $y-8=\frac{1}{2}(x-11)$ o.e.                                                                                                                                                                                                                                                                                                            | M1            |  |
|                    | $y = \frac{1}{2}x + \frac{5}{2}$ accept exact equivalents e.g. $\frac{6}{12}$                                                                                                                                                                                                                                                                                     | A1c.a.o. (4)  |  |
| (b)                | Gradient of $l_2 = -2$                                                                                                                                                                                                                                                                                                                                            | M1            |  |
|                    | Equation of $l_2$ : $y - 0 = -2(x - 10)$ [ $y = -2x + 20$ ]                                                                                                                                                                                                                                                                                                       | M1            |  |
|                    | $\frac{1}{2}x + \frac{5}{2} = -2x + 20$                                                                                                                                                                                                                                                                                                                           | M1            |  |
|                    | $\underline{x = 7}$ and $\underline{y = 6}$ depend on all 3 Ms                                                                                                                                                                                                                                                                                                    | A1, A1 (5)    |  |
| (c)                | $RS^2 = (10-7)^2 + (0-6)^2 (= 3^2 + 6^2)$                                                                                                                                                                                                                                                                                                                         | M1            |  |
|                    | $RS = \sqrt{45} = 3\sqrt{5}  (*)$                                                                                                                                                                                                                                                                                                                                 | A1c.s.o. (2)  |  |
| (d)                | $PQ = \sqrt{12^2 + 6^2}$ , = $6\sqrt{5}$ or $\sqrt{180}$ or $PS = 4\sqrt{5}$ and $SQ = 2\sqrt{5}$<br>Area = $\frac{1}{2}PQ \times RS = \frac{1}{2}6\sqrt{5} \times 3\sqrt{5}$                                                                                                                                                                                     | M1,A1         |  |
|                    | <u>= 45</u>                                                                                                                                                                                                                                                                                                                                                       | A1 c.a.o. (4) |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                   | 15            |  |
| (a)                | $1^{\text{st}}  \text{M1}$ for attempting $\frac{y_1 - y_2}{x_1 - x_2}$ , must be $y$ over $x$ . No formula condone one sign slip, but if formula is quoted then there must be some correct substitution. $1^{\text{st}}  \text{A1}$ for a fully correct expression, needn't be simplified. $2^{\text{nd}}  \text{M1}$ for attempting to find equation of $l_1$ . |               |  |
| (b)                | $1^{\text{st}}$ M1 for using the perpendicular gradient rule $2^{\text{nd}}$ M1 for attempting to find equation of $l_2$ . Follow their gradient provided different. $3^{\text{rd}}$ M1 for forming a suitable equation to find $S$ .                                                                                                                             |               |  |
| (c)                | M1 for expression for $RS$ or $RS^2$ . Ft their $S$ coordinates                                                                                                                                                                                                                                                                                                   |               |  |
| (d)                | 1 <sup>st</sup> M1 for expression for $PQ$ or $PQ^2$ . $PQ^2 = 12^2 + 6^2$ is M1 but $PQ = 12^2 + 6^2$ is M0 Allow one numerical slip.                                                                                                                                                                                                                            |               |  |
|                    | 2 <sup>nd</sup> dM1 for a full, correct attempt at area of triangle. Dependent on previou                                                                                                                                                                                                                                                                         | s M1.         |  |

### GENERAL PRINCIPLES FOR C1 MARKING

### Method mark for solving 3 term quadratic:

### 1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where  $|pq| = |c|$ , leading to  $x = \dots$   
 $(ax^2 + bx + c) = (mx + p)(nx + q)$ , where  $|pq| = |c|$  and  $|mn| = |a|$ , leading to  $x = \dots$ 

### 2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c).

### 3. Completing the square

Solving 
$$x^2 + bx + c = 0$$
:  $(x \pm p)^2 \pm q \pm c$ ,  $p \ne 0$ ,  $q \ne 0$ , leading to  $x = ...$ 

### Method marks for differentiation and integration:

### 1. <u>Differentiation</u>

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

### 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

### Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values. There must be some correct substitution.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

### **Exact answers**

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

### **Answers without working**

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

## **Misreads**

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first</u> 2 A (or B) marks which <u>would have been lost by following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.