

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 4.(a)

(b) \& $$
\begin{aligned}
& \mathrm{f}^{\prime}(x)=\left(x^{2}+1\right) \times \frac{1}{x}+\ln x \times 2 x \\
& \mathrm{f}^{\prime}(\mathrm{e})=\left(\mathrm{e}^{2}+1\right) \times \frac{1}{\mathrm{e}}+2 \mathrm{e}=3 \mathrm{e}+\frac{1}{\mathrm{e}}
\end{aligned}
$$

\[
$$
\begin{aligned}
& \left(\frac{x^{3}}{3}+x\right) \ln x-\int\left(\frac{x^{3}}{3}+x\right) \frac{1}{x} d x \\
= & \left(\frac{x^{3}}{3}+x\right) \ln x-\int\left(\frac{x^{2}}{3}+1\right) d x \\
= & {\left[\left(\frac{x^{3}}{3}+x\right) \ln x-\left(\frac{x^{3}}{9}+x\right)\right]_{1}^{e} } \\
= & \frac{2}{9} e^{3}+\frac{10}{9}
\end{aligned}
$$

\] \& | M1 A1 |
| :--- |
| M1 A1 |
| (4) |
| M1 A1 |
| A1 |
| M1 A1 |
| (5) | \\

\hline 5. (a) \& | $\frac{9+4 x^{2}}{9-4 x^{2}}=-1+\frac{18}{(3+2 x)(3-2 x)}, \text { so } A=-1$ |
| :--- |
| Uses $18=B(3-2 x)+C(3+2 x)$ and attempts to find B and C $B=3 \text { and } C=3$ |
| Or Uses $9+4 x^{2}=A\left(9-4 x^{2}\right)+B(3-2 x)+C(3+2 x)$ and attempts to find A, B and C $A=-1, B=3 \text { and } C=3$ | \& | B1 |
| :--- |
| M1 |
| A1 A1 |
| (4) |
| M1 |
| A1, A1, A1 | \\

\hline (b) \& Obtains $A x+\frac{B}{2} \ln (3+2 x)-\frac{C}{2} \ln (3-2 x)$ Substitutes limits and subtracts to give $2 A+\frac{B}{2} \ln (5)-\frac{C}{2} \ln \left(\frac{1}{5}\right)$ $=-2+3 \ln 5$ or $-2+\ln 125$ \& | M1 A1 |
| :--- |
| M1 A1ft |
| A1 | \\

\hline
\end{tabular}

