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1.      Figure 1

Figure 1 shows the graph of y = f(x),  –5  x  5.

The point M (2, 4) is the maximum turning point of the graph.

Sketch, on separate diagrams, the graphs of

(a) y = f(x) + 3,
(2)

(b) y = f(x),
(2)

(c) y = f(x).
(3)

Show on each graph the coordinates of any maximum turning points.
     

2. Express

)2)(32(
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as a single fraction in its simplest form.
(7)

3. The point P lies on the curve with equation y = ln 







x
3

1
. The x-coordinate of P is 3.

Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and 
b are constants.

(5)
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M (2, 4)
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4. (a) Differentiate with respect to x

(i) x2e3x + 2,
(4)

(ii)
x

x

3

)2(cos 3

.

(4)

(b) Given that x = 4 sin (2y + 6), find 
x

y

d

d
in terms of x. 

(5)

5.        f(x) = 2x3 – x – 4.

(a) Show that the equation f(x) = 0 can be written as

x = 





 

2

12

x
.

(3)

The equation 2x3 – x – 4 = 0 has a root between 1.35 and 1.4.

(b) Use the iteration formula

xn + 1 = 









2

12

nx
,

with x0 = 1.35, to find, to 2 decimal places, the value of x1, x2 and x3.
(3)

The only real root of f(x) = 0 is .

(c) By choosing a suitable interval, prove that  = 1.392, to 3 decimal places.
(3)
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6. f(x) = 12 cos x – 4 sin x.

Given that f(x) = R cos (x + ), where R  0 and 0    90,

(a) find the value of R and the value of . 
(4)

(b) Hence solve the equation

12 cos x – 4 sin x = 7

for 0  x < 360, giving your answers to one decimal place.
(5)

(c) (i) Write down the minimum value of 12 cos x – 4 sin x.
(1)

(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum 
value occurs.

(2)

7. (a) Show that 

(i)
xx

x

sincos

2cos


 cos x – sin x,      x  (n – 4

1 ),  n  ℤ,

(2)

(ii) 2
1 (cos 2x – sin 2x)  cos2 x – cos x sin x – 2

1 .

(3)

(b) Hence, or otherwise, show that the equation

cos 
2

1

sincos

2cos









 


can be written as

sin 2 = cos 2.
(3)

(c) Solve, for 0   < 2,

sin 2 = cos 2,

giving your answers in terms of .
(4)
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8. The functions f and g are defined by

f:x  2x + ln 2,      x  ℝ,

g:x  e2x,                x  ℝ.

(a) Prove that the composite function gf is

gf:x  4e4x,             x  ℝ.
(4)

(b) Sketch the curve with equation y = gf(x), and show the coordinates of the point where the 
curve cuts the y-axis.

(1)

(c) Write down the range of gf.
(1)

(d) Find the value of x for which 
xd

d
[gf(x)] = 3, giving your answer to 3 significant figures.

(4)

TOTAL FOR PAPER: 75 MARKS
END
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Figure 1 shows the graph of y = f(x),  –5 ( x ( 5.



The point M (2, 4) is the maximum turning point of the graph.


Sketch, on separate diagrams, the graphs of


(a)
y = f(x) + 3,
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(b)
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Show on each graph the coordinates of any maximum turning points.
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as a single fraction in its simplest form.


 (7)



3.
The point P lies on the curve with equation y = ln 
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Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants. 
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4.
(a)
Differentiate with respect to x 




(i)
x2e3x + 2,

(4)
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5.





       f(x) = 2x3 – x – 4.


(a) 
Show that the equation f(x) = 0 can be written as
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The equation 2x3 – x – 4 = 0 has a root between 1.35 and 1.4.



(b)
Use the iteration formula


xn + 1 = 
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with x0 = 1.35, to find, to 2 decimal places, the value of x1, x2 and x3.
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The only real root of f(x) = 0 is (.


(c)
By choosing a suitable interval, prove that ( = 1.392, to 3 decimal places.

(3)



6.





f(x) = 12 cos x – 4 sin x.


Given that f(x) = R cos (x + (), where R ( 0 and 0 ( ( ( 90(,

(a)
find the value of R and the value of (. 

(4)


(b)
Hence solve the equation


12 cos x – 4 sin x = 7


for 0 ( x < 360(, giving your answers to one decimal place.


(5)

(c)
(i)
Write down the minimum value of  12 cos x – 4 sin x.

(1)



(ii)
Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.


(2)



7.
(a)
Show that 
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(b)
Hence, or otherwise, show that the equation
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can be written as


sin 2( = cos 2(.


(3)



(c)
Solve, for 0 ( ( < 2(,


sin 2( = cos 2(,




giving your answers in terms of (.

 (4)



8.
The functions f and g are defined by

f : x 
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(a)
Prove that the composite function gf is


gf : x 
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(b)
Sketch the curve with equation y = gf(x), and show the coordinates of the point where the curve cuts the y-axis.


(1)



(c)
Write down the range of gf.


(1)



(d)
Find the value of x for which 
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[gf(x)] = 3, giving your answer to 3 significant figures.
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