GCE
 Edexcel GCE
 Core Mathematics C2 (6664)

J anuary 2006

Mark Scheme (Results)
http://www.xtremepapers.net

J anuary 2006
6664 Core Mathematics C2
Mark Scheme

Question number	Scheme			Marks	
1.	(a) $2+1-5+c=0 \quad$ or	$-2+c=0$		M1	
	$\underline{c}=2$			A1	(2)
	(b) $\mathrm{f}(x)=(x-1)\left(2 x^{2}+3 x-2\right)$		$(x-1)$	B1	
			division	M1	
	$=\ldots(2 x-1)(x+2)$			M1 A1	(4)
	(c) $\mathrm{f}\left(\frac{3}{2}\right)=2 \times \frac{27}{8}+\frac{9}{4}-\frac{15}{2}+\mathrm{c}$			M1	
	Remainder $=c+1.5 \quad=\underline{3.5}$		ft their c	A1ft	(2)

(a) M1 for evidence of substituting $x=1$ leading to linear equation in c
(b) B1 for identifying $(x-1)$ as a factor
$1^{\text {st }}$ M1 for attempting to divide.
Other factor must be at least $\left(2 x^{2}+\right.$ one other term $)$
$2^{\text {nd }}$ M1 for attempting to factorise a quadratic resulting from attempted division
A1 for just $(2 x-1)(x+2)$.
(c) M1 for attempting $\mathrm{f}\left(\pm \frac{3}{2}\right)$. If not implied by $1.5+c$, we must see some substitution of $\pm \frac{3}{2}$.
A1 follow through their c only, but it must be a number.

Question number	Scheme	Marks
2.	(a) $(1+p x)^{9}=1+9 p x ;+\binom{9}{2}(p x)^{2}$ (b) $9 p=36$, so $p=4$ $q=\frac{9 \times 8}{2} p^{2} \quad$ or $\quad 36 p^{2} \quad$ or $36 p$ if that follows from their (a) So $q=576$	B1 B1 M1 A1 M1 A1cao
N.B.	(a) $2^{\text {nd }}$ B1 for $\binom{9}{2}(p x)^{2}$ or better. Condone "," not " + ". (b) $1^{\text {st }} \mathrm{M} 1$ for a linear equation for p. $2^{\text {nd }}$ M1 for either printed expression, follow through their p. $1+9 p x+36 p x^{2}$ leading to $p=4, q=144$ scores B1B0 M1A1M1A0 i.e 4/6	
3.	(a) $\begin{aligned} (A B)^{2} & =(4-3)^{2}+(5)^{2} \quad[=26] \\ A B & =\underline{\sqrt{26}} \end{aligned}$ (b) $\begin{aligned} p & =\left(\frac{4+3}{2}, \frac{5}{2}\right) \\ & =\left(\frac{7}{2}, \frac{5}{2}\right) \end{aligned}$ (c) $\quad\left(x-x_{p}\right)^{2}+\left(y-y_{p}\right)^{2}=\left(\frac{A B}{2}\right)^{2}$ $(x-3.5)^{2}+(y-2.5)^{2}=6.5$	M1 M1 M1 M1 M1 A1 c.a.o
	(a) M1 for an expression for $A B$ or $A B^{2}$ N.B. $\left(x_{1}+x_{2}\right)^{2}+\ldots$ is M0 (b) M1 for a full method for x_{p} (c) $1^{\text {st }} \mathrm{M} 1 \quad$ for using their x_{p} and y_{p} in LHS $2^{\text {nd }}$ M1 for using their $A B$ in RHS N.B. $x^{2}+y^{2}-7 x-5 y+12=0$ scores, of course, $3 / 3$ for part (c). Condone use of calculator approximations that lead to correct answer given.	

Question number	Scheme	Marks
6.	(a) $\quad t=15 \quad 25 \quad 30$ $v=\begin{array}{lll}3.80 & 9.72 & 15.37\end{array}$ (b) $\begin{aligned} S & \approx \frac{1}{2} \times 5 ;[0+15.37+2(1.22+2.28+3.80+6.11+9.72)] \\ & =\frac{5}{2}[61.63]=154.075=\text { AWRT } \underline{154} \end{aligned}$	$\begin{aligned} & \text { B1 B1 B1 } \\ & \text { B1 [M1] } \\ & \text { A1 } \end{aligned}$
	(a) S.C. Penalise AWRT these values once at first offence, thus the following marks could be AWRT 2 dp (Max 2/3)	

GENERAL PRINCIPLES FOR C1 \& C2 MARKING

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$

2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad(x \pm p)^{2} \pm q \pm c, \quad p \neq 0, q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but will be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.
These are not common. In clear cases, please deduct the first 2 A (or B) marks which would have been lost by following the scheme. (Note that 2 marks is the maximum misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).
Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.
If in doubt please send to review or refer to Team Leader.

