

GCE

Edexcel GCE

Core Mathematics C1 (6663)

January 2006

advancing learning, changing lives

Mark Scheme (Results)

http://www.xtremepapers.net

January 2006 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme		Marks
1.	$x(x^{2} - 4x + 3)$ = x(x-3)(x-1)	Factor of x. (Allow $(x - 0)$) Factorise 3 term quadratic	M1 M1 A1
			(3) Total 3 marks
	Alternative: $(x^2 - 3x)(x - 1)$ or $(x^2 - x)(x - 3)$ s then $x(x - 3)(x - 1)$ scores the first Alternative: Finding factor $(x - 1)$ or $(x - 3)$ by then completing, using factor x , sec Factors "split": e.g. $x(x^2 - 4x + 3)$ s Factor x not seen: e.g. Dividing by If an equation is solved, i.s.w.	scores the <u>second</u> M1 (allow \pm for each sign), M1, and A1 if correct. The factor theorem scores the <u>second</u> M1, ores the <u>first</u> M1, and A1 if correct. $\Rightarrow (x-3)(x-1)$. Allow full marks. $x \Rightarrow (x-3)(x-1)$. M0 M1 A0.	

Question number	Scheme	Marks
2.	(a) $u_2 = (-2)^2 = 4$	B1
	$u_3 = 1, u_4 = 4$ For u_3 , ft $(u_2 - 3)^2$	B1ft, B1
		(3)
	(b) $u_{20} = 4$	B1ft
		(1)
		Tatal 4 marks
		1 otal 4 marks
	(b) ft only if sequence is "oscillating".	
	Do not give marks if answers have clearly been obtained from wrong working,	
	e.g. $u_2 = (3-3)^2 = 0$	
	$u_3 = (4-3)^2 = 1$	
	$u_4 = (5-3)^2 = 4$	

Question number	Scheme			
3.	(a) $y = 5 - (2 \times 3) = -1$	(or equivalent verification) (*)	B1	
				(1)
	(b) Gradient of <i>L</i> is $\frac{1}{2}$		B1	
	$y - (-1) = \frac{1}{2}(x - 3)$	(ft from a <u>changed</u> gradient)	M1 A1ft	
	$x - 2y - 5 = 0 \qquad (or equ$	iv. with integer coefficients)	A1	
				(4)
			Total 5 ma	rks
	(a) $y - (-1) = -2(x - 3) \Rightarrow y = 5 - 2x$ is find	e for B1.		
	Just a table of values including $x = 3$, $y = -1$ is insufficient.			
	(b) M1: eqn of a line through $(3, -1)$, with any numerical gradient (except 0 or ∞).			
	For the M1 A1ft, the equation may be in	any form, e.g. $\frac{y - (-1)}{x - 3} = \frac{1}{2}$.		
	Alternatively, the M1 may be scored by gradient and substituting $(3, -1)$ to find t of <i>c</i> follows through correctly from a <u>cha</u>	using $y = mx + c$ with a numerical he value of c, with A1ft if the value anged gradient.		
	Allow $x - 2y = 5$ or equiv., but must be	integer coefficients.		
	The "= 0" can be implied if correct work	ing precedes.		

Question number	Schem	e	Marks	
4.	(a) $\frac{dy}{dx} = 4x + 18x^{-4}$ M1: x	$x^2 \rightarrow x \text{ or } x^{-3} \rightarrow x^{-4}$	M1 A1	
				(2)
	(b) $\frac{2x^3}{3} - \frac{6x^{-2}}{-2} + C$ M1: 2	$x^2 \rightarrow x^3 \text{ or } x^{-3} \rightarrow x^{-2} \text{ or } + C$	M1 A1 A1	
				(3)
	$\left(=\frac{2x^3}{3}+3x^{-2}+C\right)$ First A	A1: $\frac{2x^3}{3} + C$		
		Second A1: $-\frac{6x^{-2}}{-2}$		
			Total 5 mai	rks
	In both parts, accept any correct version, sin Accept $4x^1$ for $4x$. <u>+ C in part (a) instead of part (b):</u> Penalise only once, so if otherwise correct s	nplified or not. cores M1 A0, M1 A1 A1.		

Question number	Scheme	Marks
5.	(a) $3\sqrt{5}$ (or $a = 3$)	B1 (1)
	(b) $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})} \times \frac{(3+\sqrt{5})}{(3+\sqrt{5})}$	M1
	$(3 - \sqrt{5})(3 + \sqrt{5}) = 9 - 5$ (= 4) (Used as or intended as denominator)	B1
	$(3+\sqrt{5})(p \pm q\sqrt{5}) = \dots 4 \text{ terms } (p \neq 0, q \neq 0)$ (Independent)	M1
	or $(6+2\sqrt{5})(p \pm q\sqrt{5}) = \dots 4$ terms $(p \neq 0, q \neq 0)$	
	[Correct version: $(3 + \sqrt{5})(3 + \sqrt{5}) = 9 + 3\sqrt{5} + 3\sqrt{5} + 5$, or double this.]	
	$\frac{2(14+6\sqrt{5})}{4} = 7+3\sqrt{5}$ 1 st A1: b = 7, 2 nd A1: c = 3	A1 A1
		(5)
		Total 6 marks
	(b) 2^{nd} M mark for attempting $(3 + \sqrt{5})(p + q\sqrt{5})$ is generous. Condone errors.	

Question number	Scheme	Marks
6.	(a) (See below) Clearly through origin (or (0, 0) seen)	M1 A1
	3 labelled (or (3, 0) seen)	A1 (3)
	(b) 6 1 1 1 4 6 1 and 4 labelled (or (1, 0) and (4, 0) seen) 6 labelled (or (0, 6) seen)	M1 A1 A1 (3)
	(c) 3 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3	M1 A1 A1 (3)
	 (a) M1: (b) M1: (c) M1: <	Total 9 marks

Question number	Scheme			S
7.	(a) $500 + (500 + 200) = 1200$ or $S_2 = \frac{1}{2} 2\{1000 + 200\} = 1200$ (*)			(1)
	(b) Using $a = 500$, $d = 200$ with $n = 7$, 8 or 9 $a + (n-1)d$ or "listing"			
	$500 + (7 \times 200) = (\pounds)1900$			(2)
	(c) Using $\frac{1}{2}n\{2a+(n-1)d\}$ or $\frac{1}{2}n\{a+l\}$, or listing and "summing" terms			
	$S_8 = \frac{1}{2}8\{2 \times 500 + 7 \times 200\}$ or $S_8 = \frac{1}{2}8\{500 + 1900\}$, or all terms in list	correct	A1	
	$=(\pounds) 9600$		A1	(3)
	(d) $\frac{1}{2}n\{2 \times 500 + (n-1) \times 200\} = 32000$ M1: General S_n , equated to 3	2000	M1 A1	
	$n^2 + 4n - 320 = 0$ (or equiv.) M1: Simplify to 3 term quadr	atic	M1 A1	
	(n+20)(n-16) = 0 $n =$ M1: Attempt to solve 3 t.q.		M 1	
	n = 16, Age is 26		A1cso,A1	cso
				(7)
			Total 13 n	narks
	(b) Correct answer with no working: Allow both marks.			
	(c) <u>Some</u> working must be seen to score marks: Minimum working: 500 + 700 + 900 +(+ 1900) = scores M1 (A1).			
	(d) Allow \geq or > throughout , apart from "Age 26".			
	A common <u>misread</u> here is 3200. This gives $n = 4$ and age 14, and can M1 A0 M1 A0 M1 A1 A1 with the usual misread rule.	score		
	<u>Alternative:</u> (Listing sums) (500, 1200, 2100, 3200, 4500, 6000, 7700, 9600,) 11700, 14000, 16500, 19200, 22100, 25200, 28500, 32000			
	List at least up to 32000 All values correct n = 16 (perhaps implied by age) Age 26	M3 A2 A1cso A1cso		
	If there is a mistake in the list, e.g. 16^{th} sum = 32100, possible marks are: M3 A0 A0 A0			
	<u>Alternative</u> : (Trial and improvement) Use of S_n formula with $n = 16$ (and perhaps other values) Accurately achieving 32000 for $n = 16$ Age 26	M3 A3 A1		

Question number	Scheme	Marks
8.	$\frac{5x^2 + 2}{x^{\frac{1}{2}}} = 5x^{\frac{3}{2}} + 2x^{-\frac{1}{2}}$ M1: One term correct.	M1 A1
	A1: Both terms correct, and no extra terms.	
	$f(x) = 3x + \frac{5x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)} + \frac{2x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} (+C) \qquad (+C \text{ not required here})$	M1 A1ft
	6 = 3 + 2 + 4 + C Use of $x = 1$ and $y = 6$ to form eqn. in C	M1
	C = -3	A1cso
	$3x + 2x^{\frac{5}{2}} + 4x^{\frac{1}{2}} - 3$ (simplified version required)	A1 (ft <i>C</i>)
		(7)
	[or: $3x + 2\sqrt{x^5} + 4\sqrt{x} - 3$ or equiv.]	
		Total 7 marks
	 For the integration: M1 requires evidence from just one term (e.g. 3 → 3x), but not just "+C". A1ft requires correct integration of at least 3 terms, with at least one of these terms having a fractional power. 	
	For the final A1, follow through on <i>C</i> only.	

Question number	Scheme			Marks		
9.	(a) $-2(P)$,	2 (<i>Q</i>)	(± 2 scores B1 B1)		B1, B1	
	(b) $y = x^3 - x^2 - 4x$	+ 4 (May be seen earlier)	Multiply out, giving	4 terms	M1	(2)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2x - 4$	4		(*)	M1 A1cso	
						(3)
	(c) At $x = -1$: $\frac{dy}{dx} = 3$	$(-1)^2 - 2(-1) - 4 = 1$				
	Eqn. of tangent:	y - 6 = 1(x - (-1)),	y = x + 7	(*)	M1 A1cso	
	2					(2)
	(d) $3x^2 - 2x - 4 = 1$	(Equating to "gradient of ta	ngent")		M1	
	$3x^2 - 2x - 5 = 0$	(3x-5)(x+1) = 0	$x = \dots$		M1	
	$x = \frac{5}{3}$ or equiv.				A1	
	$y = \left(\frac{5}{3} - 1\right)\left(\frac{25}{9} - 1\right)\left(\frac{25}{9$	$(-4), = \frac{2}{3} \times \left(-\frac{11}{9}\right) = -\frac{22}{27} $	or equiv.		M1, A1	
						(5)
					Total 12 n	narks
	(b) <u>Alternative:</u>	antista har ano da stanla socues	the second M1.			
	dv (entiate by product rule scores	the second M1:			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left\{ (x^2 - 4) \times \right\}$	$1\} + \{(x-1) \times 2x\}$				
	Then multiplying	out scores the first M1, with	A1 if correct (cso).			
	(c) M1 requires full	method: Evaluate $\frac{dy}{dx}$ and use	in eqn. of line through	(-1,6),		
	Alternative	(n.b. the grad	lient need not be 1 for t	his M1).		
	Gradient of $y = x$	$x + 7$ is 1, so solve $3x^2 - 2x - 2x - 3x^2 - 2x - 3x^2 - 3x^2$	4 = 1, as in (d) to get $x = -1$.	M1 A1cso		
	(d) 2^{nd} and 3^{rd} M matrix k is a constant.	ks are dependent on starting	with $3x^2 - 2x - 4 = k$,	where		

Question number	Scheme		Marks	
10.	(a) $x^2 + 2x + 3 = (x+1)^2$, +2 (a = 1, b	= 2)	B1, B1	(2)
	(b) "'U''-shap	ed parabola	M1	
	Vertex in	correct quadrant (ft from $(-a, b)$	A1ft	
	(0, 3) (or	3 on y-axis)	B1	(3)
	(c) $b^2 - 4ac = 4 - 12 = -8$		B1	
	Negative, so curve does not cross <i>x</i> -axis		B 1	(2)
	(d) $b^2 - 4ac = k^2 - 12$ (May be v	within the quadratic formula)	M1	
	$k^2 - 12 < 0$ (Correct inequali	ty expression in any form)	A1	
	$-\sqrt{12} < k < \sqrt{12}$ (or $-2\sqrt{3} < k < 2$	2√3)	M1 A1	(4)
			Total 11 n	narks
	 (b) The B mark can be scored independently of (3, 0) shown on the <i>y</i>-axis scores the B1, but (c) " no real roots" is insufficient for the 2nd " curve does not touch <i>x</i>-axis" is insufficient (d) 2nd M1: correct solution method for <u>their</u> que e.g. k² - 12 < 0 gives k between the 2 critic whereas k² - 12 > 0 gives k < α, k > 4 whereas k² - 12 > 0 gives k < α, k > 4 whereas k² - 12 > 0 gives k < α, k > 4 whereas k² - 12 or k < √12 " scores the final M "k > -√12 or k < √12 " scores M1 A0, "k > -√12, k < √12 " scores M1 A0. N.B. k < ±√12 does not score the 2nd M m k < √12 does not score the 2nd M m and ≤ instead of <: Penalise only once, on first or a score the 2nd M m and score the 3nd M m and score the 3nd	the sketch. t if not shown on the axis, it is B0. B mark. ient for the 2 nd B mark. adratic inequality, cal values $\alpha < k < \beta$, β . M1 A1, but ark. rk. ccurrence.		

GENERAL PRINCIPLES FOR C1 MARKING

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ... $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm p)^2 \pm q \pm c$, $p \neq 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Misreads

(See the next sheet for a simple example).

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first 2 A</u> (or B) marks which <u>would have been lost by</u> <u>following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

MISREADS

Question 8. $5x^2$ misread as $5x^3$

8.
$$\frac{5x^3+2}{x^{\frac{1}{2}}} = 5x^{\frac{5}{2}} + 2x^{-\frac{1}{2}}$$
 M1 A0

$$f(x) = 3x + \frac{5x^{\frac{7}{2}}}{\left(\frac{7}{2}\right)} + \frac{2x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} (+C)$$
 M1 A1ft

$$6 = 3 + \frac{10}{7} + 4 + C$$
 M1

$$C = -\frac{17}{7},$$
 $f(x) = 3x + \frac{10}{7}x^{\frac{7}{2}} + 4x^{\frac{1}{2}} - \frac{17}{7}$ A0, A1