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1. Solve the equation 
 

z5 = i, 
 

 giving your answers in the form cos  + i sin . 
(5) 

 
 

2. The variable y satisfies the differential equation 
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 It is given that y = 1 and 
x

y

d

d
 = 2 at x = 0.5. 

 
 Use the approximations 
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,      with h = 0.1, 

 
 to find an estimate of y at x = 0.4. 

(6) 
 
 

3.  A transformation T : ℝ2  ℝ2 is represented by the matrix 
 

A = ,  where k is a constant. 

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 For the case k = –4, 
 
 (a) find the image under T of the line with equation y = 2x + 1. 

(2) 
 

 For the case k = 2, find 
 
 (b) the two eigenvalues of A, 

(4) 

 (c) a cartesian equation for each of the two lines passing through the origin which are invariant 
under T. 

 (3) 
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4.      A = ,  where k is a real constant. 
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 (a) Find values of k for which A is singular.  

(4) 

 Given that A is non-singular, 
 
 (b) find, in terms of k, A–1.  

 (5) 

 

5. Prove by induction that, for n ℤ+, 
 

  (i)  = 2{1 + (n – 1)2

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 (ii) for y = ln (2 + 3x),  where x > – 3
2 , 
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6.       (1 + 2x)
x

y

d

d
 = x + 4y2. 

 
 (a) Show that  
 

             (1 + 2x)
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 (b) Differentiate equation (1) with respect to x to obtain an equation involving  
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(3) 
 

 Given that y = 2
1  at x = 0, 

 
 (c) find a series solution for y, in ascending powers of x, up to and including the term in x3. 

 (6) 

N19949A 3 Turn over  



7. The plane   passes through the points 
 

P(–1, 3, –2),  Q(4, –1, –1) and R(3, 0, c), where c is a constant. 
 

 (a) Find, in terms of c, RP   RQ . 
(3) 

 

 Given that RP   RQ  = 3i + dj + k, where d is a constant, 
 
 (b) find the value of c and show that d = 4, 

 (2) 

 (c) find an equation of   in the form r.n = p, where p is a constant. 
(3) 

 
 The point S has position vector i + 5j + 10k. The point S  is the image of S under reflection in  . 
 
 (d) Find the position vector of  S . 

 (5) 

 

8. In the Argand diagram the point P represents the complex number z. 
 

 Given that arg 
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 (a) sketch the locus of P, 

(4) 

 (b) deduce the value of z + 1 – i. 
(2) 

 
 The transformation T from the z-plane to the w-plane is defined by 
 

w = 
2

)i1(2




z
,   z  –2. 

 
 (c) Show that the locus of P in the z-plane is mapped to part of a straight line in the w-plane, and 

show this in an Argand diagram. 
(6) 
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