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1. (a) Write down the binomial expansion, in ascending powers of x, of (1 + 6x)4, giving each 
coefficient as an integer. 

 (3) 

 (b) Use your binomial expansion to find the exact value of 6014.  
(2) 

 
 

2.             Figure 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 Figure 1 shows the graph of y = f(x),  –5  x  5. 
 
 The point M (2, 4) is the maximum turning point of the graph. 
 
 Sketch, on separate diagrams, the graphs of 
 
 (a) y = f(x) + 3, 

(2) 

 (b) y = f(x), 
(2) 

 (c) y = f(x). 
(3) 

 
Show on each graph the coordinates of any maximum turning points. 
 

 

 

 y

 M (2, 4)

 x  5 O –5 
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3.  Express 
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 as a single fraction in its simplest form. 

 (7) 
 

 

4. The point P lies on the curve with equation y = ln 







x
3

1
. The x-coordinate of P is 3. 

 
 Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b 

are constants.  
(5) 

 
 

5.                f(x) = 2x3 – x – 4. 
 
 (a)  Show that the equation f(x) = 0 can be written as 
 

x = 





 

2

12

x
. 

(3) 

 The equation 2x3 – x – 4 = 0 has a root between 1.35 and 1.4. 
 
 (b) Use the iteration formula 
 

xn + 1 = 









2

12

nx
, 

 
  with x0 = 1.35, to find, to 2 decimal places, the value of x1, x2 and x3. 

 (3) 
 

 The only real root of f(x) = 0 is . 
 
 (c) By choosing a suitable interval, prove that  = 1.392, to 3 decimal places. 

(3) 
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6.            Figure 2 
 
 
 

 y  
 

 A 

 
 
 
 R
 
 
 

B 
 
 
 
 Figure 2 shows the shaded region R which is bounded by the line y = –2x + 4 and the 

curve y = 
x2

3
.  

 
 The points A and B are the points of intersection of the line and the curve. 
 
 Find 
 
 (a) the x-coordinates of the points A and B, 

(4) 

 (b) the exact area of R. 
 (6) 

 
 

 O  x
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7.          Figure 1 
 
 

 y  
 
 
 
 
 
 C
 
 
 
 
 
 

 Figure 3 shows part of the curve C with equation y = – 1. The shaded region bounded by C, 
the x-axis and the line with equation x = 5 represents the cross-section of a skateboarding ramp. 
The units on each axis are in metres. 

20.06e x

 
 (a) Copy and complete the table, showing the height y of the ramp. Give the values of y to 

3 decimal places. 
 

x 0 1 2 3 4 5 

y 0 0.062  0.716   

 (3) 

 (b) Use the trapezium rule, with all the values from your table, to estimate the area of 
cross-section of the ramp. 

(4) 
 

 The ramp is made of concrete and is 6 m wide. 
 
 (c) Calculate an estimate for the volume of concrete required to make the ramp. 

(1) 

 A builder makes the amount of concrete for the volume calculated in part (c).  
 
 (d) State, with a reason, whether or not there is enough concrete to make the ramp. 

 (2) 

           
 

 O  x  5
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8. The functions f and g are defined by 
 

f : x 2x + ln 2,      x  ℝ, 
 

g : x e 2x,                x  ℝ. 
 
 (a) Prove that the composite function gf is 
 

gf : x  4e4x,             x  ℝ. 
(4) 

 (b) Sketch the curve with equation y = gf(x), and show the coordinates of the point where the 
curve cuts the y-axis. 

(1) 

 (c) Write down the range of gf. 
(1) 

 (d) Find the value of x for which 
xd

d
[gf(x)] = 3, giving your answer to 3 significant figures. 

 (4) 
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9. (a) Show that  
 

  (i) 
xx

x

sincos

2cos


  cos x – sin x,      x  (n – 4

1 ),  n  ℤ, 

(2) 

  (ii) 2
1 (cos 2x – sin 2x)  cos2 x – cos x sin x – 2

1 . 

 (3) 

 (b) Hence, or otherwise, show that the equation 
 

cos  
2

1

sincos

2cos









 


 

 
  can be written as 
 

sin 2 = cos 2. 
(3) 

 (c) Solve, for 0   < 2, 
 

sin 2 = cos 2, 
 

  giving your answers in terms of . 
 (4) 

 
TOTAL FOR PAPER: 75 MARKS 

END 
 
 

N21135A 7   


	Advanced/Advanced Subsidiary

