edexcel

June 2005 6688 Statistics S6 Mark Scheme

Question Number	Scheme						
1.	H_0 : Median _m – Median _s = 0; H_1 : Median _m – Median _s > 0	B1					
	8 + & 2 -						
	N=10 P($\leq 2 \mid p = 0.5, n = 10$) = 0.0547 > 0.05						
	\therefore Insufficient evidence to reject H ₀ . Students do not carry out calculations more accurately when listening to music.						
2.	H_0 : Median = 20; H_1 : Median \neq 20						
	x - median+10-8-5+1+7-3-4-6+2Rank $\underline{9}$ 85 $\underline{1}$ $\underline{7}$ 346 $\underline{2}$	M1 M1 A1					
	$S^+ = 19$ ($S^- = 26$)	A1					
	$n = 9 \Longrightarrow CR : S \le 5$	B1					
	Since 19 is not in the critical region there is insufficient evidence to reject H_0 . The claim is justified on this evidence.						
3.	H_0 : Median time of girls = Median time of boys H_1 : Median time of girls \neq Median time of boysboth	B1					
	$n_1 = 25, n_2 = 25$ $T \approx N\left(\frac{25(25+25+1)}{2}, \frac{25 \times 25(25+25+1)}{12}\right) \approx N(637.5, 2656.25)$	M1 A1 A1					
	$Z = \frac{704 - 637.5}{\sqrt{2656.25}} = 1.29$ Accept 704 ± 0.5	M1 A1					
	Since 1.29 is not in the critical region ($z > 1.96$) there is no evidence to suggest that boys are quicker at French translation than girls.	A1 √ (7)					

edexcel	

4.		C.F. = $\frac{(48.13 + 43.13 + 46.50 + 53.65)^2}{24} = \frac{(191.41)^2}{24}$						
		$\therefore \text{ SST} = 1543.9043 - \frac{(191.41)^2}{24} = 17.3298$	M1 A1					
		$SSA = \frac{1}{6} \{ 48.13^2 + 43.13^2 + 46.50^2 + 53.65^2 \} - \frac{(191.41^2)}{24} = 9.6365$						
		Source df mss Ratio df	B1					
		Between areas 3 9.6365 3.2122 8.35 Ratio Residual 20 7.6933 0.3847 Ratio	M1 A1					
		Total 23 17.3298	B1					
		H ₀ : $\mu_1 = \mu_2 = \mu_3 = \mu_4$; H ₁ : Not all means are equal	B1					
		(Assume $\alpha = 0.05$) F _{3, 20} = 3.10 (4.94 for 1%)						
		mean yields between areas.		(11)				
5.	(a)	$\hat{\varphi} = \frac{32}{10 \times 50} = 0.064$	B1	(1)				
	(b)	UWL = $0.064 + 1.96 \times \sqrt{\frac{0.064 \times 0.936}{59}} = 0.1318$						
		$UAI = 0.064 + 2.5758 \times \frac{0.064 \times 0.936}{0.064 \times 0.936} = 0.153156$						
		Graph (Limits and scales) $\sqrt{50}$	B2	(2)				
	(c)	Target value is zero; Company not concerned if p tends to zero.	B1 B1	(2)				
	(d)	Graph (Points)	B2	(2)				
	(e)	All points below warning limit so production is in control.	B1	(1)				

							edex	kcel	
6	(a)	Randomised Blo	ck Design					B1	(1)
	(b)	$SSO = \frac{1}{4} \{ 302^2 +$	$297^2 + 287^2$	$\left\{-\frac{886^2}{12}\right\} = 29$	9.17			B1	
		$SSM = \frac{1}{3} \{ 179^2 + $	$250^2 + 271^2$	$+186^{2}$ $-\frac{886}{12}$	$\frac{1}{2} = 2109.67$	1		B1	
		Source Operators Machines Residual	df 2 3 6	<u>s.s.</u> 29.17 2109.67 116.83	MSS 14.59 703.22 19.47	Ratio 0.75 36.12	df Residual Ratios	B1 B1 M1 A1	A1
		(i) $H_0: \mu_A = \mu_B =$ $\alpha = 0.05 \text{ (say)}$	$\mu_{\rm C} = \mu_{\rm D}; \ {\rm II}$ $F_6^3 (0.05) =$	2255.67 H ₁ : Not all me 4.76 (F_6^3 (0.0	eans are equa	al		B1 B1 B1	
		Since 36.12 is in machines	the critical i	region there is	evidence of	differences b	etween	A1√	
		(ii) $H_0: \mu_1 = \mu_2 = \mu_3$; $H_1:$ Not all means are equal					B1		
		$\alpha = 0.05 \text{ (say)}$	$F_6^2(0.05)$	$= 5.14$ (F_6^2 (0).01) = 10.90))		B1	
		Since 0.75 is not There are no diff	in the criticater in the criti	al region there ne mean qualit	e is insufficie ty of the ope	ent evidence to rators.	o reject H ₀ .	A1√	(14)

Question Number	Scheme			
7. (a)	$S_{xy} = 6493576 - \frac{14061 \times 9297}{20} = -42679.85$	B1		
	$\therefore \qquad \hat{\beta} = \frac{-42679.85}{13998.95} = -3.048789 \qquad -3.05$	M1 A1		
	$\therefore \qquad \hat{\alpha} = \frac{9297}{20} - (-3.048789) \times \frac{14061}{20} = 2608.303167 \qquad 2608.30$	M1 A1		
	:. $y = 2608.30 - 3.05x$		(5)	
(b)	$RSS = 164592.55 - \frac{(-42679.85)^2}{13998.95} = 34470.67686$	M1 A1		
	:. 95% CI is given by			
	$-3.048789 \pm 2.101 \times \sqrt{\frac{34470.67686}{18 \times 13998.95}}$	M1 B1	A1	
	i.e. –3.83 & -2.27	A1	(6)	
(c)	-3.00 is in the CI : Assumption is justified.	B1 B1	(2)	
(d)	$\mathcal{E}_{l} \sim N(0, \sigma^2)$	B1		
	Plot residuals (y - \hat{y}) against x	B1		
	Residuals randomly scattered about <i>x</i> axis \Rightarrow model justified	B1	(3)	