edexcel

June 2005 6673 Pure P3 Mark Scheme

Que Num	estion nber	Scheme	Marks
1.	(a) (b)	Finding f (±2), and obtaining $16 - 32 + 10 + 6 = 0$ Or uses division and obtains $2x^2 - kx$, obtaining $2x^2 - 4x - 3$ and concluding remainder = 0 Finding f (± $\frac{1}{2}$), and obtaining $-\frac{1}{4} - 2 - \frac{5}{2} + 6 = 1\frac{1}{4}$ Or uses division and obtains $x^2 - kx$,	M1, A1 M1 A1 M1, A1
	(c)	obtaining $x^2 - \frac{9}{2}x + \frac{19}{4}$ and concluding remainder $= \frac{5}{4}$ $x = 2$ (also allow $\frac{2 \pm \sqrt{10}}{2}$ or $\frac{4 \pm \sqrt{40}}{4}$)	B1 (5)
2.	(a)	Writes down binomial expansion up to and including term in x^3 , allow ${}^{n}C_{r}$ notation $1 + nax + n(n-1)\frac{a^2x^2}{2} + \frac{n(n-1)(n-2)}{6}a^3x^3$ (condone errors in powers of <i>a</i>)	M1
		States $na = 15$	B1
		Puts $\frac{n(n-1)a^2}{2} = \frac{n(n-1)(n-2)a^3}{6}$ (condone errors in powers of a) 3 = (n-2)a	dM1
		Solves simultaneous equations in <i>n</i> and <i>a</i> to obtain $a = 6$, and $n = 2.5$ [n.b. Just writes $a = 6$, and $n = 2.5$ following no working or following errors allow the last M1 A1 A1]	M1 A1 A1 (6)
	(b)	Coefficient of $x^3 = 2.5 \times 1.5 \times 0.5 \times 6^3 \div 6 = 67.5$ (or equals coefficient of $x^2 = 2.5 \times 1.5 \times 6^2 \div 2 = 67.5$)	B1 (1) [7]

Question Number		Scheme	Mar	ks
3.	(a)	Attempt at integration by parts, i.e. $kx \sin 2x \pm \int k \sin 2x dx$, with $k = 2$ or $\frac{1}{2}$ = $\frac{1}{2}x \sin 2x - \int \frac{1}{2} \sin 2x dx$	M1 A1	
		Integrates sin 2 <i>x</i> correctly, to obtain $\frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + c$ (penalise lack of constant of integration first time only)	M1, A1	(4)
	(b)	Hence method : Uses $\cos 2x = 2\cos^2 x - 1$ to connect integrals Obtains $\int x \cos^2 x dx = \frac{1}{2} \{ \frac{x^2}{2} + \text{answer to part}(a) \} = \frac{x^2}{4} + \frac{x}{4} \sin 2x + \frac{1}{8} \cos 2x + k$ Otherwise method $\int x \cos^2 x dx = x(\frac{1}{4}\sin 2x + \frac{x}{2}) - \int \frac{1}{4}\sin 2x + \frac{x}{2} dx$ $= \frac{x^2}{4} + \frac{x}{4}\sin 2x + \frac{1}{8}\cos 2x + k$ B1 for $(\frac{1}{4}\sin 2x + \frac{x}{2})$	B1 M1 A1 B1, M1 A1	(3)
		$-\frac{-}{4}+\frac{-}{4}\sin 2x+\frac{-}{8}\cos 2x+k$		(3)
4	(a)	r = 3 (both circles) Centres are at (2, 0) and (5, 0)	B1 B1, B1	(3)
	(b)	$1^{st} circle correct quadrantscentre on x axis2^{nd} circle correct quadrantscentre on x axiscircles same size and passingthrough centres of other$	B1 B1 B1	
	(c)	circle Finds circles meet at $x = 3.5$, by mid point of centres or by solving algebraically	M1	(3)
		Establishes $y = \pm \frac{3\sqrt{3}}{2}$, and thus distance is $3\sqrt{3}$. Or uses trig or Pythagoras with lengths 3, angles 60 degrees, or 120 degrees. Complete and accurate method to find required distance Establishes distance is $3\sqrt{3}$.	M1, A1 M1 M1 A1	(3)

Que Num	stion nber	Scheme	Marks
5. 6,	(a) (b) (c) (a)	Substitutes $t = 4$ to give V , = 1975.31 or 1975.30 or 1975 or 1980 (3 s.f) $\frac{dV}{dt} = -\ln 1.5 \times V ;= -800.92 \text{ or } -800.9 \text{ or } -801 \qquad \text{M1 needs } \ln 1.5 \text{ term}$ rate of decrease in value on 1 st January 2005 $\overline{AB} = \begin{pmatrix} c \\ d-5 \\ 10 \end{pmatrix} = k \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} \qquad \text{or } 11 + 5\lambda = 21, \Rightarrow \lambda = 2 , \qquad \therefore c = 4$ $d = 7$	M1 , A1 (2) M1 A1; A1 (3) B1 (1) M1 , A1 A1 (3)
	(b)	$\begin{pmatrix} 2\\1\\5 \end{pmatrix} \bullet \begin{pmatrix} 2\lambda\\5+\lambda\\11+5\lambda \end{pmatrix} = 0$ $\therefore 4\lambda + 5 + \lambda + 55 + 25\lambda = 0$ $\therefore \lambda = -2$ Substitutes to give the point <i>P</i> , $-4\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ (Accept (-4, 3, 1))	M1 A1 M1 A1 M1, A1
	(c)	Finds the length of <i>OA</i> , or <i>OB</i> or <i>OP</i> or <i>AB</i> as $\sqrt{146}$ or $\sqrt{506}$ or $\sqrt{26}$ or $\sqrt{120}$ resp. Uses area formula- either Area = $\frac{1}{2} \mathbf{AB} \times \mathbf{OP} $ or $= \frac{1}{2} \mathbf{OA} \times \mathbf{OB} \sin \angle AOB$ or $= \frac{1}{2} \mathbf{OA} \times AB \sin \angle OAB$ or $= \frac{1}{2} AB \times \mathbf{OB} \sin \angle ABO$ $= \frac{1}{2} \sqrt{120} \sqrt{26}$ or $\frac{1}{2} \sqrt{146} \sqrt{506} \sin 11.86$ or $\frac{1}{2} \sqrt{146} \sqrt{120} \sin 155.04$ or $\frac{1}{2} \sqrt{120} \sqrt{506} \sin 13.10$ = 27.9	(6) M1 M1 M1 A1 (4)

Question Number	Scheme	Marks	;
7 (a)	As $V = \frac{4}{3}\pi r^3$, then $\frac{dV}{dr} = 4\pi r^2$ Using chain rule $\frac{dr}{dt} = \frac{dV}{dt} \div \frac{dV}{dr}; = \frac{k}{\frac{4}{3}\pi r^3} \times \frac{1}{4\pi r^2}$ $= \frac{B}{r^5} *$	M1 M1 A1 A1	(4)
(b)	$\int r^5 dr = \int B dt$ $\therefore \frac{r^6}{6} = Bt + c \text{(allow mark at this stage, does not need } r = \text{)}$	B1 M1 A1 ((3)
(c)	Use $r = 5$ at $t = 0$ to give $c = \frac{5^6}{6}$ or 2604 or 2600 Use $r = 6$ at $t = 2$ to give $B = \frac{6^5}{2} - \frac{5^6}{12}$ or 2586 or 2588 or 2590 Put $t = 4$ to obtain r^6 (approx 78000) Then take sixth root to obtain $r = 6.53$ (cm)	M1 M1 A1 A1 ((5)

Question Number	Scheme	Marks	
8. (a)	$\frac{dx}{dt} = -\frac{1}{(1+t)^2}$ and $\frac{dy}{dt} = \frac{1}{(1-t)^2}$	B1, B1	
	$\therefore \frac{dy}{dx} = \frac{-(1+t)^2}{(1-t)^2} \text{ and at } t = \frac{1}{2}, \text{ gradient is } -9 \qquad \text{M1 requires their } \frac{dy}{dt} / \frac{1}{t}$	M1 A1cao)
	and substitution of <i>t</i> .		
	At the point of contact $x = \frac{2}{3}$ and $y = 2$	B1	
(b)	Equation is $y - 2 = -9(x - \frac{2}{3})$	M1 A1	(7)
(b)	Either obtain t in terms of x and y i,e, $t = \frac{1}{x} - 1$ or $t = 1 - \frac{1}{y}$ (or both)	M1	
	Then substitute into other expression $y = f(x)$ or $x = g(y)$ and rearrange	M1	
	(or put $\frac{1}{x} - 1 = 1 - \frac{1}{y}$ and rearrange)		
	To obtain $y = \frac{x}{2x-1}$ *	A1	(3)
	Or Substitute into $\frac{x}{2x-1} = \frac{\frac{1}{(1+t)}}{\frac{2}{1+t}-1}$	M1	
	$= \frac{1}{2 - (1 + t)} = \frac{1}{1 - t}$	A1	
	2 - (1+t) 1-t $= y *$	M1	(3)
(c)	$Area = \int_{\frac{2}{3}}^{1} \frac{x}{2x - 1} dx$	B1	
	$= \int \frac{u+1}{2u} \frac{du}{2} = \frac{1}{4} \int 1 + \frac{1}{u} du$ putting into a form to integrate	M1	
	$= \left[\frac{1}{4}u + \frac{1}{4}\ln u\right]_{\frac{1}{3}}^{1}$	M1 A1	
	$= \frac{1}{4} - \left(\frac{1}{12} + \frac{1}{4}\ln\frac{1}{3}\right)$	M1	
	$=\frac{1}{6}+\frac{1}{4}\ln 3$ or any correct equivalent.	A1	(6)
6673 Pure			

6673 Pure P3 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

Question Number	Scheme	Marks
8. (c)	Or Area = $\int_{\frac{2}{3}}^{1} \frac{x}{2x-1} dx$ = $\int_{\frac{1}{2}}^{1} \frac{1}{2x-1} dx$ putting into a form to integrate = $\left[\frac{1}{2}x + \frac{1}{4}\ln(2x-1)\right]_{\frac{2}{3}}^{1}$ = $\frac{1}{2} - \frac{1}{3} - \frac{1}{4}\ln\frac{1}{3} = -\frac{1}{6} - \frac{1}{4}\ln\frac{1}{3}$	B1 M1 M1A1 dM1A1 (6)
	Or Area = $\int \frac{1}{1-t} \frac{-1}{(1+t)^2} dt$ = $\int \frac{A}{(1-t)} + \frac{B}{(1+t)} + \frac{C}{(1+t)^2} dt$ putting into a form to integrate = $\left[\frac{1}{4}\ln(1-t) - \frac{1}{4}\ln(1+t) + \frac{1}{2}(1+t)^{-1}\right]_{-}$ = Using limits 0 and ½ and subtracting (either way round) = $\frac{1}{6} + \frac{1}{4}\ln 3$ or any correct equivalent.	B1 M1 M1 A1ft dM1 A1 (6)
	Or Area = $\int_{\frac{3}{2}}^{1} \frac{x}{2x-1} dx$ then use parts = $\frac{1}{2} x \ln(2x-1) - \int_{\frac{2}{3}}^{1} \frac{1}{2} \ln(2x-1) dx$ = $\frac{1}{2} x \ln(2x-1) - [\frac{1}{4}(2x-1)\ln(2x-1) - \frac{1}{2}x]$ = $\frac{1}{2} - (\frac{1}{3} \ln \frac{1}{3} - \frac{1}{12} \ln \frac{1}{3} + \frac{1}{3})$ = $\frac{1}{6} - \frac{1}{4} \ln \frac{1}{3}$	B1 M1 M1A1 DM1 A1