J une 2005
6673 Pure P3
Mark Scheme

Question Number Scheme
$\frac{d x}{d t}=-\frac{1}{(1+t)^{2}} \quad$ and $\quad \frac{d y}{d t}=\frac{1}{(1-t)^{2}}$
$\therefore \frac{d y}{d x}=\frac{-(1+t)^{2}}{(1-t)^{2}}$ and at $t=1 / 2$, gradient is -9
M1 requires their dy/dt / their dx/dt and substitution of t.

At the point of contact $x=\frac{2}{3}$ and $y=2$
Equation is $y-2=-9\left(x-\frac{2}{3}\right)$
(b)

Either obtain t in terms of x and $y \mathrm{i}, \mathrm{e}, t=\frac{1}{x}-1$ or $t=1-\frac{1}{y} \quad$ (or both)
Then substitute into other expression $\mathrm{y}=\mathrm{f}(\mathrm{x})$ or $\mathrm{x}=\mathrm{g}(\mathrm{y})$ and rearrange

$$
\text { (or put } \frac{1}{x}-1=1-\frac{1}{y} \text { and rearrange) }
$$

To obtain $y=\frac{x}{2 x-1}$ *
Or Substitute into $\frac{x}{2 x-1}=\frac{\frac{1}{(1+t)}}{\frac{2}{1+t}-1}$
$=\frac{1}{2-(1+t)}=\frac{1}{1-t}$
$=y^{*}$
(c)

$$
\begin{aligned}
\text { Area } & =\int_{\frac{2}{3}}^{1} \frac{x}{2 x-1} d x \\
& =\int^{u+1} \frac{d u}{2 u}=\frac{1}{4} \int 1+\frac{1}{u} d u \\
& =\left[\frac{1}{4} u+\frac{1}{4} \ln u\right]_{\frac{1}{3}}^{1} \\
& =\frac{1}{4}-\left(\frac{1}{12}+\frac{1}{4} \ln \frac{1}{3}\right) \\
& =\frac{1}{6}+\frac{1}{4} \ln 3 \text { or any correct equivalent. }
\end{aligned}
$$

$$
=\int \frac{u+1}{2 u} \frac{d u}{2}=\frac{1}{4} \int 1+\frac{1}{u} d u \quad \text { putting into a form to integrate }
$$

Marks

B1, B1

M1 A1cao

Question Number	Scheme	Marks
8. (c)	$\begin{aligned} \text { Or Area } & =\int_{\frac{2}{3}}^{1} \frac{x}{2 x-1} d x \\ & =\int \frac{1}{2}+\frac{\frac{1}{2}}{2 x-1} d x \\ & =\left[\frac{1}{2} x+\frac{1}{4} \ln (2 x-1)\right]_{\frac{2}{3}}^{1} \\ & =\frac{1}{2}-\frac{1}{3}-\frac{1}{4} \ln \frac{1}{3}=\frac{1}{6}-\frac{1}{4} \ln \frac{1}{3} \end{aligned}$ $\begin{aligned} & \text { Or Area }=\int \frac{1}{1-t} \frac{-1}{(1+t)^{2}} d t \\ & \qquad=\int \frac{A}{(1-t)}+\frac{B}{(1+t)}+\frac{C}{(1+t)^{2}} d t \\ & \quad=\left[\frac{1}{4} \ln (1-t)-\frac{1}{4} \ln (1+t)+\frac{1}{2}(1+t)^{-1}\right] \end{aligned}$ putting into a form to integrate $=$ Using limits 0 and $1 / 2$ and subtracting (either way round) $=\frac{1}{6}+\frac{1}{4} \ln 3$ or any correct equivalent. Or Area $=\int_{\frac{2}{3}}^{1} \frac{x}{2 x-1} d x$ then use parts $\begin{aligned} & =\frac{1}{2} x \ln (2 x-1)-\int_{\frac{2}{3}}^{1} \frac{1}{2} \ln (2 x-1) d x \\ & =\frac{1}{2} x \ln (2 x-1)-\left[\frac{1}{4}(2 x-1) \ln (2 x-1)-\frac{1}{2} x\right] \\ & =\frac{1}{2}-\left(\frac{1}{3} \ln \frac{1}{3}-\frac{1}{12} \ln \frac{1}{3}+\frac{1}{3}\right) \\ & =\frac{1}{6}-\frac{1}{4} \ln \frac{1}{3} \end{aligned}$	B1 M1 M1A1 dM1 A1 (6) B1 M1 M1 A1ft dM1 A1 (6) B1 M1 M1A1 DM1 A1

