Question Number	Scheme	Marks
1. (a)	$\begin{equation*} \underline{2} \quad \text { Penalise } \pm \tag{1} \end{equation*}$	B1
(b)	$\begin{aligned} 8^{-\frac{2}{3}} & =\frac{1}{\sqrt[3]{64}} \text { or } \frac{1}{(a)^{2}} \text { or } \frac{1}{\sqrt[3]{8^{2}}} \text { or } \frac{1}{8^{\frac{2}{3}}} \quad \text { Allow } \pm \\ & =\frac{1}{4} \text { or } 0.25 \end{aligned}$	M1 A1 (2)
(b)	M1 for understanding that "-" power means reciprocal $8^{\frac{2}{3}}=4$ is M0A0 and $-\frac{1}{4}$ is M1A0	
2. (a)	$\frac{d y}{d x}=6+8 x^{-3}$ $x^{n} \rightarrow x^{n-1}$ both ($6 x^{0}$ is OK)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ (2)
(b)	$\int\left(6 x-4 x^{-2}\right) d x=\frac{6 x^{2}}{2}+4 x^{-1}+c$	M1 A1 A1
(b)	In (a) and (b) M1 is for a correct power of x in at least one term. This could be 6 in (a) or $+c$ in (b) $1^{\text {st }} \mathrm{A} 1$ for one correct term in $x: \frac{6 x^{2}}{2} \underline{\text { or }}+4 x^{-1} \quad$ (or better simplified versions) $2^{\text {nd }} \mathrm{A} 1$ for all 3 terms as printed or better in one line. N.B. M1A0A1 is not possible. SC. For integrating their answer to part (a) just allow the M1 if $+c$ is present	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 3. (a) \& \[
\begin{array}{rr}
\hline x^{2}-8 x-29 \equiv(x-4)^{2}-45 \& (x \pm 4)^{2} \\
(x-4)^{2}-16+(-29) \\
(x \pm 4)^{2}-45
\end{array}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
(3)
\end{tabular} \\
\hline ALT \& \begin{tabular}{ccc}
Compare coefficients \& \begin{tabular}{c}
\(-8=2 a\) \\
\(\underline{\text { AND }}\)\begin{tabular}{rl}
\(a^{2}+b\) \& \(=-29\) \\
\(b=-45\)
\end{tabular}
\end{tabular}\(\quad\) equation for \(a\) \\
\& \(a=-4\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
(3)
\end{tabular} \\
\hline (b) \& \begin{tabular}{l}
\[
\begin{aligned}
\& (x-4)^{2}=45 \\
\& \Rightarrow x-4= \pm \sqrt{45} \\
\& x=4 \pm 3 \sqrt{5}
\end{aligned}
\] \\
(follow through their \(a\) and \(b\) from (a))
\[
\begin{gathered}
c=4 \\
d=3(\pm \mathrm{OK})
\end{gathered}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
(3) \\
(6)
\end{tabular} \\
\hline (a)

(b) \& | M1 for $(x \pm 4)^{2}$ or an equation for a (allow sign error ± 4 or ± 8 on ALT) 1 stA1 for $(x-4)^{2}-16(-29)$ can ignore -29 or for stating $a=-4$ and an equation for b $\overline{2^{\text {nd }}} \mathrm{A} 1$ for $b=-45$ |
| :--- |
| Note M1A0 A1 is possible for $(x+4)^{2}-45$ |
| N.B. On EPEN these marks are called B1M1A1 but apply them as M1A1A1 |
| M1 for a full method leading to $x-4=\ldots$ or $x=\ldots($ condone $x-4=\sqrt{-n})$ |
| N.B. $(x-4)^{2}-45=0$ leading to $(x-4) \pm \sqrt{45}=0$ is M0A0A0 |
| A1 for c and A1 for d |
| N.B. M1 and A1 for c do not need \pm (so this is a special case for the formula method) but \pm must be present for the d mark) |
| Note Use of formula that ends with $\frac{8 \pm 6 \sqrt{5}}{2}$ scores M1 A1 A0 (but must be $\sqrt{5}$) i.e. only penalise non-integers by one mark. | \& \\

\hline
\end{tabular}

Question	Scheme	Marks
4. (a)	$\xrightarrow[\sim]{\text { (3,15) }}$	B1 B1 (2)
(b)		M1
	$\begin{array}{r} -2 \text { and } 4 \\ \max \end{array}$	$\begin{array}{ll} \mathrm{A} 1 \\ \text { A1 } & \tag{3}\\ & \text { (3) } \\ & \text { (5) } \end{array}$
(a) (b)	Marks for shape: graphs must have curved sides and round top. Don't penalise twice. (If both graphs are really straight lines then penalise B0 in part (a) only) $1^{\text {st }} \mathrm{B} 1$ for \cap shape through $(0,0)$ and $((k, 0)$ where $k>0)$ $2^{\text {nd }}$ B1 for max at $(3,15)$ and 6 labelled or $(6,0)$ seen Condone $(15,3)$ if 3 and 15 are correct on axes. Similarly $(5,1)$ in (b) M1 for \cap shape NOT through $(0,0)$ but must cut x-axis twice. $1^{\text {st }} \mathrm{A} 1$ for -2 and 4 labelled or $(-2,0)$ and $(4,0)$ seen $2^{\text {nd }} \mathrm{A} 1$ for max at $(1,5)$. Must be clearly in $1^{\text {st }}$ quadrant	
5.	$\begin{align*} & x=1+2 y \text { and sub } \rightarrow(1+2 y)^{2}+y^{2}=29 \\ & \Rightarrow 5 y^{2}+4 y-28(=0) \\ & \text { i.e. }(5 y+14)(y-2)=0 \\ & \quad(y=) 2 \text { or }-\frac{14}{5} \quad \text { (o.e.) } \tag{o.e.}\\ & y=2 \Rightarrow x=1+4=5 ; \quad y=-\frac{14}{5} \Rightarrow x=-\frac{23}{5}(\text { o.e }) \end{align*}$ (both)	M1 A1 M1 A1 M1A1 f.t. (6)
	$1^{\text {st }}$ M1 Attempt to sub leading to equation in 1 variable Condone sign error such as $1-2 y, x=-(1+2 y)$ penalise $1^{\text {st }} \mathrm{A} 1$ only $1^{\text {st }} \mathrm{A} 1$ Correct 3TQ (condone $=0$ missing) $2^{\text {nd }}$ M1 Attempt to solve 3TQ leading to 2 values for y. $2^{\text {nd }} \mathrm{A} 1$ Condone mislabelling $x=$ for $y=\ldots$ but then M0A0 in part (c). $3^{\text {rd }}$ M1 Attempt to find at least one x value (must use a correct equation) $3^{\text {rd }} \mathrm{A} 1$ f.t. f.t. only in $x=1+2 y$ (3sf if not exact) Both values. N.B False squaring. (e.g. $x^{2}+4 y^{2}=1$) can only score the last 2 marks.	

Question Number	Scheme	Marks
7. (a)	$\begin{aligned} & (3-\sqrt{x})^{2}=9-6 \sqrt{x}+x \\ & \div b y \sqrt{x} \quad \rightarrow 9 x^{-\frac{1}{2}}-6+x^{\frac{1}{2}} \end{aligned}$	M1 A1 c.s.o. (2)
(b)	$\int\left(9 x^{-\frac{1}{2}}-6+x^{\frac{1}{2}}\right) d x=\frac{9 x^{\frac{1}{2}}}{\frac{1}{2}}-6 x+\frac{x^{\frac{3}{2}}}{\frac{3}{2}}(+c)$	M1 A2/1/0
	use $y=\frac{2}{3}$ and $x=1$: $\frac{2}{3}=18-6+\frac{2}{3}+c$	M1
	So $y=18 x^{\frac{1}{2}}-6 x+\frac{2}{3} x^{\frac{3}{2}}-12$	A1 c.s..o. A1f.t. (6)
(a)(b)	M1 Attempt to multiply out $(3-\sqrt{x})^{2}$. Must have 3 or 4 terms, allow one sign error A1 cso Fully correct solution to printed answer. Penalise invisible brackets or	
	$1^{\text {st }}$ M1 Some correct integration: $x^{n} \rightarrow x^{n+1}$ A1 At least 2 correct unsimplified terms Ignore $+c$ A2 All 3 terms correct (unsimplified) $2^{\text {nd }}$ M1 Use of $y=\frac{2}{3}$ and $x=1$ to find c. No $+c$ is M0. A1c.s.o. for -12. (o.e.) Award this mark if " $c=-12$ " stated i.e. not as part of an expression for y A1f.t. for 3 simplified x terms with $y=\ldots$ and a numerical value for c. Follow through their value of c but it must be a number.	
Question	Scheme	Marks

