GCE
Edexcel GCE
Core Mathematics C1(6663)

Summer 2005

Mark Scheme (Results)

6663 Core Mathematics C1 Mark Scheme

Question Number	Scheme	Marks
3. (a)	$\begin{array}{rr} \hline x^{2}-8 x-29 \equiv(x-4)^{2}-45 & (x \pm 4)^{2} \\ (x-4)^{2}-16+(-29) \\ (x \pm 4)^{2}-45 \end{array}$	$\begin{align*} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \tag{3} \end{align*}$
ALT	Compare coefficients $-8=2 a$ $\underline{\text { AND }}$$a^{2}+b$ $=-29$ $b=-45$ \quad equation for a $a=-4$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ (3)
(b)	$\begin{aligned} & (x-4)^{2}=45 \\ & \Rightarrow x-4= \pm \sqrt{45} \\ & x=4 \pm 3 \sqrt{5} \end{aligned}$ (follow through their a and b from (a)) $\begin{aligned} & c=4 \\ & d=3 \end{aligned}$	M1 A1 A1 (3) (6)
(a) (b)	M1 for $(x \pm 4)^{2}$ or an equation for a. M1 for a full method leading to $x-4=\ldots$ or $x=\ldots$ A1 for c and A1 for d Note Use of formula that ends with $\frac{8 \pm 6 \sqrt{5}}{2}$ scores M1 A1 A0 (but must be $\sqrt{5}$) i.e. only penalise non-integers by one mark.	

Question Number	Scheme	Marks
9 (a)	$\left.\begin{array}{ll} (S=) a+(a+d)+\ldots & \ldots+[a+(n-1) d] \\ (S=)[a+(n-1) d]+\ldots & \ldots+a \\ 2 S=[2 a+(n-1) d]+\ldots & \ldots+[2 a+(n-1) d] \quad \\ 2 S=n[2 a+(n-1) d] & \\ S=\frac{n}{2}[2 a+(n-1) d] \end{array}\right\} \text { either }$	B1 M1 dM1 A1 c.s.o (4)
(b)	$\begin{aligned} & (a=149, d=-2) \\ & u_{21}=149+20(-2)=£ 109 \end{aligned}$	M1 A1 (2)
(c)	$\begin{aligned} & S_{n}=\frac{n}{2}[2 \times 149+(n-1)(-2)] \quad(=n(150-n)) \\ & S_{n}=5000 \Rightarrow n^{2}-150 n+5000=0 \quad(*) \end{aligned}$	M1 A1 A1 c.s.o
		(3)
(d)	$\begin{aligned} & (n-100)(n-50)=0 \\ & n=50 \text { or } 100 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A2/1/0 } \end{aligned}$
(e)	$u_{100}<0 \quad \therefore n=100$ not sensible	B1 f.t.
		(13)
(a)	B1 requires at least 3 terms, must include first and last terms, an adjacent term dots and + signs. $1^{\text {st }} \mathrm{M} 1$ for reversing series. Must be arithmetic with a, d (or a, l) and n. $2^{\text {nd }} \mathrm{dM} 1$ for adding, must have $2 S$ and be a genuine attempt. Either line is sufficient. Dependent on $1^{\text {st }}$ M1 (NB Allow first 3 marks for use of l for last term but as given for final mark)	
(b)	M1 for using $a=149$ and $d= \pm 2$ in $a+(n-1) d$ formula.	
(c)	M1 for using their a, d in $S_{n} \quad$ A1 any correct expression A1cso for putting $S_{n}=5000$ and simplifying to given expression. No wrong work	
(d)	M1 Attempt to solve leading to $n=\ldots$ A2/1/0 Give A1A0 for 1 correct value and A1A1 for both correct	
(e)	B1 f.t. Must mention 100 and state $u_{100}<0$ (or loan paid or equivalent) If giving f.t. then must have $n \geq 76$.	

\#

GENERAL PRINCIPLES FOR C1 MARKING

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$

2. Formula

Attempt to use correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0: \quad(x \pm p)^{2} \pm q \pm c, \quad p \neq 0, q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but will be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.
These are not common. In clear cases, please deduct the first 2 A (or B) marks which would have been lost by following the scheme. (Note that 2 marks is the maximum misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).
Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

