6671 Pure Mathematics P1

Mark Scheme

Question Number	Scheme	Marks
1.	Forming equation in x or y by attempt to eliminate one variable $\begin{aligned} & (3-y)^{2}+y=15 \text { or } x^{2}+(3-x)=15 \\ & y^{2}-5 y-6=0 \text { or } x^{2}-x-12=0 \text { (Correct } 3 \text { term version) } \end{aligned}$ Attempt at solution i.e. solving 3 term quadratic: $(y-6)(y+1)=0, \quad y=\ldots$ $\text { or }(x-4)(x+3)=0, \quad x=\ldots$ or correct use of formula or correct use of completing the square $x=4 \text { and } x=-3 \text { or } y=-1 \text { and } y=6$ Finding the values of the other coordinates (M attempt one, A both)	M1 A1 M1 A1 M1 A1 ft (6)
2.	Using $\sin ^{2} \theta+\cos ^{2} \theta=1$ to give a quadratic in $\cos \theta$. Attempt to solve $\cos ^{2} \theta+\cos \theta=0$ $\begin{aligned} & (\cos \theta=0) \Rightarrow \theta=\frac{\pi}{2}, \frac{3 \pi}{2} \\ & (\cos \theta=-1) \Rightarrow \theta=\pi \end{aligned}$ (Candidate who writes down 3 answers only with no working scores a maximum of 3)	M1 M1 B1, B1 B1 (5)
3. (a) (b) (c)	Attempt $\mathrm{f}(2) ;=16-4+4-16=0 \Rightarrow(x-2)$ is a factor $\underline{c=8}$ A complete method to find b Either compare coefficients of x or $x^{2}: \quad-2 b+8=2$, or $-4+b=-1$ Or substitute value of x (may be implied) : e.g. $(x=1) \Rightarrow-13=(-1)(10+b)$ $\underline{b=3}$ Checking $b^{2}-8 c ; \quad-55 \Rightarrow$ no real roots to the quadratic $\Rightarrow \underline{x=2}$ is the only solution	M1; A1 (2) B1 M1 A1 (3) M1; A1 A1

Question Number	Scheme	Marks
4 (a)	Correct strategy for differentiation e.g. $y=4 x^{2}+(5 x-1) x^{-1}$ multiplied out with correct differentiation method, or product or quotient rules applied correctly to $\frac{5 x-1}{x}$. $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x,+\frac{1}{x^{2}} \quad \text { B1 for } 8 x \text { seen anywhere. }$	M1 B1, A1
	Putting $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ So $8 x^{3}+1=0 \quad \Rightarrow x=-\frac{1}{2}$. M1 requires multiplication by denominator and use of a root in the solution	M1 M1 A1 (3)
(c)	Complete method: Either $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=8-\frac{2}{x^{3}}$, with x value substituted, or gradient either side checked	M1
	Completely correct argument, either > 0 with no error seen,(24)or -ve to +ve gradient, then minimum stated	A1 (2)
5(a)	$p=15, q=-3$ Special case if B0 B0, allow M1 for method, e.g. $8=\frac{1+p}{2}$	B1, B1
(b)	Gradient of line $A D C=-\frac{5}{7}$, gradient of perpendicular line $=-\frac{1}{\text { gradient } A D C}\left(\frac{7}{5}\right)$	B1, M1
	Equation of l : $y-2=\left(\frac{7}{5}\right)(x-8)$	M1 A1ft A1cao
		(5)
(c)	Substituting $y=7$ and finding value for x,	M1
	$x=\frac{81}{7}$ or $11 \frac{4}{7}$	A1 (2)

Question Number	Scheme	Marks	
6 (a)	$P=r \theta+2 r, \quad A=\frac{1}{2} r^{2} \theta$	B1, B1	(2)
(b)	Substituting value for r and equating P to A. [2 $\left.2 \sqrt{2}(2+\theta)=\frac{1}{2}(2 \sqrt{2})^{2} \theta\right]$	M1	
	Correct process to find $\theta \quad[\theta(\sqrt{2}-1)=2]$	M1	
	$\theta=\frac{2}{\sqrt{2}-1} \quad * \text { often see } \quad \theta=\frac{4 \sqrt{2}}{4-2 \sqrt{2}}$	A1 c.s.o.	(3)
(c)	Multiply numerator and denominator by ($\sqrt{2}+1)$	M1	
	$2,+2 \sqrt{2}$	A1, A1	(3)
7 (a)	Applying correct formula [325 = $120+5(\mathrm{n}-1)$]	M1	
	Solving to give $n=42 \quad * \quad$ (or verifying in correct equation)	A1	
(b)	Using formula for sum of AP: $S=\frac{42}{2}\{240+5(42-1)\}$ or use $\frac{n}{2}\{a+l\}$	M1 A1	
	$=9345$	A1	
(c)	Recognising GP with $r=0.98$	M1	
	$\begin{aligned}\text { Value (in £ }) & =7200(0.98)^{24} \\ & =4434(\text { only this value })\end{aligned}$	M1	
		A1	
			(3)

Question Number	Scheme	Marks
8 (a)	Substitute $x=0, y=\sqrt{3}$ to give $\sqrt{3}=k \frac{\sqrt{3}}{2} \Rightarrow k=2 \quad$ (or verify result) must see $\frac{\sqrt{3}}{2}$	B1 (1)
(b)	$p=120, \quad q=300 \quad \text { (f.t. on } p+180 \text {) }$	B1, B1ft
(c)	$\arcsin (-0.8)=-53.1$ or $\arcsin (0.8)=53.1$	B1
	$(x+60)=180-\arcsin (-0.8)$ or equivalent $180+\arcsin 0.8$	M1
	First value of $x=233.1-60$, i.e. $\quad x=173.1$	A1
	OR $(x+60)=360+\arcsin (-0.8)$ or equivalent $360-\arcsin 0.8, \quad$ i.e. $x=246.9$	M1, A1
		(5)
9 (a)	$(x-3)^{2},+9$ isw . $a=3$ and $b=9$ may just be written down with no method shown.	B1, M1 A1 (3)
(b)	P is (3, 9)	B1 ft, B1ft
(c)	$A=(0,18)$	B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-6, \text { at } A \quad m=-6$ Equation of tangent is $y-18=-6 x$ (in any form)	M1 A1 A1ft
		(4)
(d)	Showing that line meets x axis directly below P, i.e. at $x=3$.	A1cso (1)
(e)	$A=\int x^{2}-6 x+18 \mathrm{~d} x=\left[\frac{1}{3} x^{3}-3 x^{2}+18 x\right]$	M1 A1
	Substituting $x=3$ to find area A under curve $A[=36]$	M1
	Area of $R=A$ - area of triangle $=A-\frac{1}{2} \times 18 \times 3,=9$	M1 A1
	Alternative: $\int x^{2}-6 x+18-(18-6 x) \mathrm{d} x$ M1	(5)
	$=\frac{1}{3} x^{3}$ M1 A1 ft	
	Use $x=3$ to give answer 9 M1 A1	

