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Number 

 
Scheme 

 
Marks 

 
1. 
 
 
 
 
 
 
 

 
 
 
 
 
 
2. 
 
 
 
 
 
 
 
 
 

 
3.       (a) 
 
          (b) 
 
 
 
 
 

         
         
         

          (c) 
 
 
 
 
 

 
Forming equation in x or y by attempt to eliminate one variable 

                           2 2(3 ) 15 (3 ) 15y y or x x     
                         (Correct 3 term version) 2 25 6 0 12y y or x x      0
 Attempt at solution     i.e. solving 3 term quadratic:  (y –6)(y +1) = 0,     y =… 
                                                                               or   (x –4)(x +3) = 0,    x =… 
                                    or correct use of formula or correct use of completing the square 
 
                                    x = 4 and x = -3  or  y =-1  and y = 6 
 
Finding the values of the other coordinates (M attempt one, A both) 
 
 
 

 

Using  to give a quadratic in cos2 2sin cos 1    . 

Attempt to solve        2cos cos 0  

                 ( cos  = 0 )  
3

,
2 2

    

                 ( cos  = -1 )      
( Candidate who writes down 3 answers only with no working scores a maximum of 3 ) 
 
 

  
Attempt f ( 2 ) ; = 16 – 4 + 4 - 16 = 0  ( x – 2) is a factor          must be statement for A1 
 
         c = 8 
 
A complete method to find b  

              Either compare coefficients of x or 2x :          -2b + 8 = 2,  or    –4 + b = -1 
              Or substitute value of x (may be implied) :    e.g.(x = 1)   -13 = (-1)(10 + b) 
 

               
              b = 3 
 
 

Checking ;         -55   no real roots to the quadratic 2 8b  c
                x = 2 is the only solution 

 
 
 

M1 
 

A1 
 
 
M1 
 
A1 
 
M1 A1 ft 

(6)
 

 

M1 
 

M1 
 
B1, B1 
 
B1 

(5)

 
M1; A1 

(2)
B1 
 
 
M1 
 
 

 
A1 

(3)

M1;  A1 
 

A1 
(3)
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Number 

 
Scheme 

 
Marks 

 
      4  (a) 
 
 
 
 
 
 
 
 

(b)  
 
 
 
 
 

          (c) 
 
 
 
 
 
 

 
 
    5(a) 
 
 
     
 
      (b) 
 
 
 
 
 
 
       (c) 
 
 
 
 

 

Correct strategy for differentiation e.g. 24 (5 1) 1y x x x    multiplied out with correct 

differentiation method, or product or quotient rules applied correctly to 
5 1x

x


. 

                            
2

d 1
8 ,

d

y
x

x x
                                                      B1 for 8x seen anywhere. 

 
 

Putting     
d

0
d

y

x
  

So        38 1x   0  1
2x   .  

                                         M1 requires multiplication by denominator and use of a root in the solution 
 
 
Complete method: 

                  Either 
2

2

d
8

d

y
3

2

x x
  , with x value substituted, 

                  or gradient either side checked 
 
Completely correct argument,  either > 0 with no error seen,( 24)or –ve to +ve gradient,  
then  minimum stated 
 
 
                           p = 15,  q = -3 

                                                      Special case if B0 B0, allow M1 for method, e.g. 
1

8
2

p
  

 

Gradient of line ADC = 5
7 , gradient of perpendicular line = 

1

gradient 5ADC
   
 

7
 

Equation of l :                    7
52 ( )( 8)y x    

                                             (Allow rearrangements of this) 7 5 46x y    0
 
 
Substituting  y = 7 and finding value for x, 
 
                                           81 4

7 7or 11x   

 
 
M1 
 
 
 
 

B1,    A1 
(3)

M1 
 
M1    A1 

(3)

M1 
 

 
 
A1 

(2)

B1,  B1 

(2)
 
B1, M1 
 
 

M1 A1ft 
 

A1cao 
(5)

 

M1 
 
 

A1 
(2)
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      6  (a) 
 
 

          (b)  
 
 
 
 
 
          
          (c) 
 
 
 
 
 

 
      7  (a) 
 
 
           

(b) 
 

 
 

           
           
          (c) 
 
 
 
 
 
 
 
 
 
 
 

 
21

22 ,P r r A r     

 

Substituting value for r and equating P to A.  21
2[2 2(2 ) (2 2) ]    

Correct process to find    [ ( 2 1) 2]    

                          
2

2 1
  


  often see      

4 2

4 2 2
 


 

 
 

Multiply numerator and denominator by ( 2 1)  
 

                                                 2, 2 2  
 
 

 
Applying correct formula  [325 = 120 +5(n-1)] 
 
   Solving to give n =42                        (or verifying in correct equation) 
 
Using formula for sum of AP:   S = 42

2 {240 5(42 1)}   or use 2 { }n a l  

                                                            
                                                          = 9345 
 
 
Recognising GP with r = 0.98  
 

Value ( in £ ) = 7200 ( 0.98)  24

 
                      = 4434 ( only this value) 

 
B1,   B1 

(2)

M1 
 

M1 
 
A1 c.s.o. 

(3)

 
M1 

 
A1,    A1 

(3)
 
 

M1 
 
A1 

(2)
M1 A1 
 

 
A1 

(3)
 

 
M1 
 
M1 
 
A1 

(3)
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    8 (a) 
 
 
       
       (b) 
 
 
       (c) 
 
 
 
 
 
 
 
 
 
 9 (a) 
      

    (b) 
 
    (c) 
 
 
     
 
 
 
 

    (d) 
 
 

    (e) 
 
 
 
 
 
 
 

 

Substitute x =0, y = 3  to give 3  = 
3

2
k       ( or verify result) must see 2k 

3

2
 

 
             p = 120,                       q = 300       (f.t. on p +180) 
 
 

sin( 0.8) 53.1arc     or sin(0.8) 53.1arc   
 
( x + 60) = 180 – arcsin( -0.8)  or equivalent   180 + arcsin 0.8  
 
                       First value of x = 233.1 – 60,   i.e.    x = 173.1 
 
OR ( x + 60) =360 + arcsin(-0.8) or equivalent 360 –arcsin 0.8,     i.e.   x = 246.9                   
 
 

 
2( 3) ,x  9   isw . a = 3 and b = 9 may just be written down with no method shown. 

 
P is (3, 9) 
 
A = (0, 18) 
 
d

2 6
d

y
x

x
  ,  at A  m = -6 

                  Equation of tangent is y – 18 = -6x  ( in any form) 
 
 
Showing that line meets x axis directly below P , i.e. at x = 3. 
 

A = 2 31
36 18d [ 3 182 ]x x x x x     x  

Substituting x =3 to find area A under curve A [=36] 
Area of R = A – area of triangle= A – 1

2 18 3,   = 9 

Alternative:  2 6 18 (18 6 )dx x x    x  M1    

                      =  31
3 x                                      M1 A1 ft 

                      Use x = 3 to give answer 9      M1 A1  
 
 

 
 
B1 

(1)
 
B1, B1ft 

(2)
 

B1 
 

 
M1 
 
A1 
 
M1, A1 

(5)

 

B1, M1 A1 
(3)

B1 ft, B1ft 
(2)

B1 
 
 
M1 A1 
 

A1ft 
(4)

A1cso 
(1)

 

M1 A1 
 

M1 
 

M1 A1 
(5)
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