January 2005
6663 Core Mathematics C1
Mark Scheme

Question number	Scheme	Marks
8.	(a) $p=15, q=-3$ (b) Grad. of line $A D C: m=-\frac{5}{7}, \quad$ Grad. of perp. line $=-\frac{1}{m} \quad\left(=\frac{7}{5}\right)$ Equation of $l: y-2=\frac{7}{5}(x-8)$ $7 x-5 y-46=0$ (Allow rearrangements, e.g. $5 y=7 x-46$) (c) Substitute $y=7$ into equation of l and find $x=\ldots$ $\frac{81}{7}$ or $11 \frac{4}{7}$ (or exact equiv.)	B1 B1 B1, M1 M1 A1ft A1 (5) M1 A1 (2) 9
9.	(a) Evaluate gradient at $x=1$ to get $4, \quad$ Grad. of normal $=-\frac{1}{m}\left(=-\frac{1}{4}\right)$ Equation of normal: $y-4=-\frac{1}{4}(x-1)$ $(4 y=-x+17)$ (b) $(3 x-1)^{2}=9 x^{2}-6 x+1 \quad$ (May be seen elsewhere) Integrate: $\frac{9 x^{3}}{3}-\frac{6 x^{2}}{2}+x(+C)$ Substitute $(1,4)$ to find $c=\ldots, \quad c=3 \quad\left(y=3 x^{3}-3 x^{2}+x+3\right)$ (c) Gradient of given line is -2 Gradient of (tangent to) C is ≥ 0 (allow >0), so can never equal -2 .	B1, M1 M1 A1 (4) B1 M1 A1ft M1, A1cso B1 B1 (2)

Question number	Scheme	Marks
10.	(a) $x^{2}-6 x+18=(x-3)^{2},+9$ (b) "U"-shaped parabola Vertex in correct quadrant $P:(0,18)$ (or 18 on y-axis) $Q:(3,9)$ (c) $\quad x^{2}-6 x+18=41$ or $(x-3)^{2}+9=41$ Attempt to solve 3 term quadratic $x=\ldots$ $x=\frac{6 \pm \sqrt{36-(4 \times-23)}}{2} \quad$ (or equiv.) $\sqrt{ } 128=\sqrt{64} \times \sqrt{ } 2 \quad($ or surd manipulation $\sqrt{2 a}=\sqrt{2} \sqrt{a})$ $3+4 \sqrt{ } 2$	$\begin{equation*} \mathrm{B} 1, \mathrm{M} 1 \mathrm{~A} 1 \tag{3} \end{equation*}$ M1 A1ft B1 B1ft M1 M1 A1 M1 A1 (5)

