MARK SCHEME

Question number		Mark scheme	Marks	
1.	(<i>a</i>)	Treatments are allocated <i>at random</i> within a block where <i>a block is a group of experimental units.</i>	B1 B1 (2)	
	<i>(b)</i>	12	B1 (1)	
	(<i>c</i>)	$F_{3,12} = 3.49$ 3, 12	B1	
		3.49	B1 (2)	
			(5 marks)	
2.	(<i>a</i>)	H ₀ : $\beta = 0.6$		
		$H_1: \beta > 0.6$ both	B1	
		$s^2 = \frac{0.145}{8} = 0.018125$	M1	
		$t = \frac{0.631 - 0.6}{\sqrt{\frac{0.0181}{2.4137}}} \qquad \qquad \frac{0.631 - 0.6}{\sqrt{\frac{s^2}{S_{xx}}}}$	M1	
		= 0.357737 Awrt 0.358	A1	
		Critical region $t > 1.860$	B1	
		$0.358 < 1.860$ \therefore not in critical region. Insufficient evidence to reject H ₀	A1 ft	
		\therefore the regression coefficient is not greater than 0.6	(6 marks)	

(ft = follow through mark)

Downloaded from http://www.thepaperbank.co.uk

EDEXCEL STATISTICS S6 (6688) – JUNE 2003

MARK SCHEME

Question number	Mark scheme					Marks	
3.	H ₀ : $\mu_A = \mu_B = \mu_C$						
	$H_1: \mu_A \neq \mu_B \neq \mu_C$					both	B1
	$\Sigma x_{ij} = 419$						
	$\Sigma x^2_{ij} = 11883$						
	$T_A = 153 \qquad T_B = 1$	144	$T_{C} = 122$				
	Between Diets SS =	$=\frac{153^2}{5}$	$+\frac{144^2}{5}+\frac{122^2}{5}$	$-\frac{419^2}{15}$			M1
	=	= 101.73					A1
	Source of variation	d.f	SS	MSS	Ratio		
	Between diets	2	101.73	50.86	7.91	d.f	B1
	Within diets	12	77.2	6.433		within	B1
	Total	14	178.933			ratio	M1 A1
	CR is F _{2,12} (0.01)> 6.	.93					B1
	or $F_{2,12}(0.05) > 3$	8.89					
	7.90 is in the critical region \therefore we can conclude that diet does have an effect				A1		
	on the performance of	ot temal	e swimmers.				(9 Marks)

(ft = follow through mark)

MARK SCHEME

Question number	Mark scheme			
4. (<i>a</i>)	$H_0: m_1 - m_0 = 0$	B1		
	H ₁ : $m_1 - m_0 > 0$	B1		
	$E(S) = \frac{1}{4}(25) \times 26 = 162.5$	M1 A1		
	Var (S) = $\frac{25 \times 26 \times 51}{24}$ = 1381.25	M1 A1		
	$z = \frac{106 - 162.5 + 0.5}{\sqrt{1381.25}} \text{ or } \frac{106 - 162.5}{\sqrt{1381.25}} $ normal	M1		
	Their μ , σ	A1 ft		
	= -1.506, -1.506, -1.51			
	- 1.5202, -1.52	A1		
	Critical region $z \le -1.6449$			
	-1.506 < -1.6449	B1		
	Insufficient evidence that athletes are faster on indoor than outdoor tracks			
		(11 marks)		

MARK SCHEME

Question number		Mark scheme	Marks	
5.	(<i>a</i>)	50 g	B1	(1)
	(<i>b</i>)	If the weight is below the mean the consumer may complain	B1	
		If the weight is above the mean it would cost the company money	B1	(2)
	(<i>c</i>)	$50 \pm 1.9600 \times \frac{2.4}{\sqrt{10}} = (48.5, 51.5)$ $50 \pm z \times \frac{2.4}{\sqrt{10}}$	M1	
		1.96	B1	
		3sf	A1	
		$50 \pm 2.5758 \times \frac{2.4}{\sqrt{10}} = (48.0, 52.0)$ 3sf	A1	(4)
		Graph labels	B1	
	(<i>d</i>)	lines	B1	(2)
	(<i>e</i>)	Means plotted		
		The values have increased and the last one is above the action limit \therefore the machine needs to be reset	B1	(2)
	(f)	If the standard deviation changes the control chart limits will no longer be valid which could result in some bags containing too little/much crisps.	B1	(1)
				narks)

(ft = follow through mark)

Downloaded from http://www.thepaperbank.co.uk

EDEXCEL STATISTICS S6 (6688) – JUNE 2003

MARK SCHEME

Question number	Mark scheme	Marks	
6. (<i>a</i>)	$H_0: m = 30$		
	$H_1: m \neq 30$	B1	
	+ - + + - + + + + +	M1	
	R = 8		
	n = 10	A1	
	$P(R \ge 8/n = 10) = 1 - P(R \le 7)$	M1	
	= 0.0547	A1	
	$0.0547 > 0.05$ \therefore no evidence to reject H ₀ . The median fuel consumption is 30 mpg	A1 ft (6)	
(b)	$H_0: m_1 = m_2$		
	H ₁ : $m_2 > m_1$	B1	
	Sample 1 7 15 11 8 14 4 12 9 5 10	M1	
	Sample 2 1 2 3 6 13	A1	
	T = 13 + 6 + 3 + 2 + 1 = 25 T'= 55 T'= 55 If rank smallest first $T = 55$ T'= 25		
	Critical region $T \le 26$	B1	
	\therefore <i>T</i> is in the critical region \therefore there is insufficient evidence that the median fuel consumption has increased		

(ft = follow through mark; (*) indicates final line is given on the paper)

MARK SCHEME

Question number	Mark scheme				
7. (<i>a</i>)	$\hat{\beta} = \frac{898}{6000} = 0.14966\dots \qquad 0.150$	B1			
	$\hat{\alpha} = 13.544 - \frac{898}{6000} \times 50$	M1			
	= 6.0606 6.06	A1	(3)		
<i>(b)</i>	$RSS = 150.36 - \frac{(898)^2}{6000}$	M1			
	= 15.9593	A1			
	$S^2 = \frac{15.96}{7}$	M1			
	= 2.27 - 2.28	A1			
	2.365	B1			
	$CJ = 0.150 \pm 2.365 \sqrt{\frac{2.28}{6000}}$ $0.150 \pm t \sqrt{\frac{S^2}{S_{xx}}}$	M1			
	(0.104, 0.196) Both	A1			
	3 sf	A1	(8)		
(c)	$r = 10.9 - (6.06 + 0.15 \times 30)$	M1			
	= 0.34 2 dp	A1			
	$s = 16.3 - (16.06 + 0.15 \times 70)$				
	= -0.26 2 dp	A1	(3)		
(d)	Graph	B1			
(<i>u</i>)	plotting	M1			
		A1 ft	(3)		
(<i>e</i>)	Points not randomly scattered about the axis; indicating it is not linear	B1; B1	(2)		
		(19 Ma	arks)		