Downloaded from http://www.thepaperbank.co.uk EDEXCEL STATISTICS S4 (6686) - JUNE 2003

Question number	Scheme	Marks
1.	$\begin{aligned} & \mathrm{P}(X>2.85)=0.05 \\ & \mathrm{P}\left(X<\frac{1}{5.67}\right)=0.01 \\ & \therefore \mathrm{P}\left(\frac{1}{5.67}<X<2.85\right)=1-0.05-0.01 \\ & \quad=0.94 \end{aligned}$	B1 B1 M1 A1 (4 marks)
2.	$\begin{aligned} & \mathrm{H}_{0}: \sigma^{2}=4 ; \mathrm{H}_{1}: \sigma^{2}>4 \\ & v=19, X_{19}^{2}(0.05)=30.144 \\ & \frac{(n-1) S^{2}}{\sigma^{2}}=\frac{19 \times 6.25}{4}=29.6875 \end{aligned}$ both use of $\frac{(n-1) S^{2}}{\sigma^{2}}$ AWRT 29.7 Since $29.6875<30.144$ there is insufficient evidence to reject H_{0}. There is insufficient evidence to suggest that the standard deviation is greater than 2.	B1 B1 M1 A1 A1 ft B1 ft (6 marks)
3. (a) (b) (i) (ii)	$\begin{aligned} & \mathrm{P}\left(X \leq c_{1}\right) \leq 0.05 ; \mathrm{P}(X \leq 3 \mid \lambda=8)=0.0424 \Rightarrow X \leq 3 \\ & \mathrm{P}\left(X \geq c_{2}\right) \leq 0.05 ; \mathrm{P}(X \geq 4 \mid \lambda=8)=0.0342 \Rightarrow X \geq 13 \\ & \mathrm{P}(X \geq 13 \mid \lambda=8)=0.0638 \\ & \therefore \text { critical region is }\{X \leq 3 \cup X \geq 13\} \\ & \mathrm{P}(4 \leq X \leq 12 \mid \lambda=10) \end{aligned}$ Power $=1-0.7813=0.2187$	

Downloaded from http://www.thepaperbank.co.uk

 EDEXCEL STATISTICS S4 (6686) - JUNE 2003MARK SCHEME

Question number	Scheme	Marks
4.	$\begin{aligned} & d: \\ & \Sigma d=19 ; \Sigma d^{2}=193 \\ & \Sigma d \end{aligned}$ $\mathrm{H}_{0}: \mu_{D}=0 ; \mathrm{H}_{1}: \mu_{D}>0$ both $t=\frac{2.375-0}{\sqrt{\frac{21.125}{8}}}=1.4615 \ldots \ldots$ Since $1.4915 \ldots$ is not in the critical region there is insufficient evidence to reject H_{0} and we conclude that there is in sufficient evidence to support the doctors' belief.	M1 B1; M1 A1 B1 M1 A1 B1 A1 ft
	Alternative: Use of 2 sample t-test \Rightarrow B0 B0 B0 M1 A1 M1 A1 B1 A1 i.e : 6/9 max $\begin{aligned} & S_{p}^{2}=\frac{7 \times 440.125+7 \times 501.357}{8+8-2}=470.74 \\ & t=\frac{216.125-213.75}{\sqrt{470.74\left(\frac{1}{8}+\frac{1}{8}\right)}}=0.0547 \end{aligned}$ critical region: $t>1.761$ Conclusion as above	M1 A1 M1 A1 B1 A1 ft

Downloaded from http://www.thepaperbank.co.uk EDEXCEL STATISTICS S4 (6686) - JUNE 2003

Question number	Scheme	Marks
5. (a)(i)	$\mathrm{E}(\hat{\theta})=\theta$	B1
	$\mathrm{E}(\hat{\theta})=\theta$ or $\mathrm{E}(\hat{\theta}) \rightarrow \theta$	B1
	and $\operatorname{Var}(\hat{\theta}) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ where n is the sample size	B1 (3)
(b)	$\mathrm{E}\left(\hat{p}_{1}\right)=p, \therefore$ Bias $=0$	B1
	$\mathrm{E}\left(\hat{p}_{2}\right)=\frac{5 p}{6}, \therefore$ Bias $=\frac{1}{6} p$	B1 B1
	$\mathrm{E}\left(\hat{p}_{3}\right)=p, \therefore$ Bias $=0$	B1 (4)
(c)	$\operatorname{Var}\left(\hat{p}_{1}\right)=\frac{1}{9 n^{2}}\{n p q+n p q+n p q\}$	M1
	$=\frac{p q}{3 n}$	A1
	$\operatorname{Var}\left(\hat{p}_{2}\right)=\frac{1}{36 n^{2}}\{n p q+9 n p q+n p q\}=\frac{11 p q}{36 n}$	A1
	$\operatorname{Var}\left(\hat{p}_{3}\right)=\frac{1}{36 n^{2}}\{4 n p q+9 n p q+n p q\}=\frac{7 p q}{18 n}$	A1 (4)
(d) (i)	\hat{p}_{1}; unbiased and smallest variance	B1 dep; B1
(ii)	\hat{p}_{2}; biased	B1 dep; B1 (4)
		(15 marks)

Downloaded from http://www.thepaperbank.co.uk

 EDEXCEL STATISTICS S4 (6686) - JUNE 2003

Question number	Scheme	Marks
7. \quad (a)	$S_{A}^{2}=\frac{1}{10}\left\{3960540-\frac{6600^{2}}{11}\right\}=54.0$	B1
	$S_{B}^{2}=\frac{1}{12}\left\{7410579-\frac{9815^{2}}{13}\right\}=21.1 \dot{6}$	B1
	$\mathrm{H}_{0}: \sigma_{A}^{2}=\sigma_{B}^{2}$; $\mathrm{H} 1: \sigma_{A}^{2} \neq \sigma_{B}^{2}$	B1
	CR: $\mathrm{F}_{10,12}>2.75$	
	$S_{A}^{2} / S_{B}^{2}=\frac{54.0}{21.1 \dot{6}}=2.55118 \ldots$	M1 A1
	Since $2.55118 \ldots$ is not in the critical region we can assume that the variances are equal.	B1 (6)
	$\mathrm{H}_{0}: \mu_{\mathrm{B}}=\mu_{\mathrm{A}}+150 ; \mathrm{H}_{1}: \mu_{\mathrm{B}}>\mu_{\mathrm{A}}+150$ both	B1
	CR: $t_{22}(0.05)>1.717$ 1.717	B1
	$S_{p}^{2}=\frac{10 \times 54.0+12 \times 21.1 \dot{6}}{22}=36.09 \dot{0} \dot{9}$	M1 A1
	$t=\frac{1755-6001-150}{\sqrt{36.0909 \ldots\left(\frac{1}{11}+\frac{1}{13}\right)}}=2.03157$	M1 A1
	AWRT 2.03	A1
	Since 2.03... is in the critical region we reject H_{0} and conclude that the mean weight of cauliflowers from B exceeds that from A by at least 50 g .	A1 ft (8)
	Samples from normal populations	
	Equal variances Any two sensible verifications	B1 B1 (2)
	Independent samples	
		(16 marks)

