Question Number	Scheme	Marks
1. (a)	$A \quad 1 a$	
	G	
	L	
	N c	B1 B1 (2)
	P	
	$S \longrightarrow 5$	
(b)	For example:	
	(i) $P-2=L-4 \quad$ c.s. $P=2-L-4$	M1
	(ii) $S-2=L-1 a=A-3 \quad$ c.s. $S=2-L=1 a-A=3$ giving	A1
	$\begin{array}{llll} A-1, & G-1, & L-4, & N-5, \\ A-3, & G-1, & L-1, & N-5, \tag{3}\\ \hline-2 \end{array}$	A1
(c)	Sam must do 2 and Nicola must do 5, leaving Philip without a task.	$\mathrm{B} 2,1,0 \quad$ (2)
		(7 marks)

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2004 PROVISIONAL MARK SCHEME

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2004 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
3. (a)	Idea of travelling along each arc at least once and seeking to do so in a minimum total. Practical meaning of arcs/numbers.	B1 (1)
(b)	$A B+D F=32+9=41$	M1 A1
	$A D+B F=25+15=41$	
	$A F+B D=18+24=42$	A1
	Repeat either $A E+E B$ and $D F$ or $A D$ and $B F$	A1 ft (4)
(c)	Not unique, e.g. gives other solution	A1 ft
(d)	$258+41=299$	B1 (2)
(e)	$D F$ is the shortest so start/finish at A / B	M1 A1 (2)
		(9 marks)

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2004 PROVISIONAL MARK SCHEME

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2004 PROVISIONAL MARK SCHEME

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \& \multicolumn{2}{|l|}{Marks} \\
\hline \multirow[t]{7}{*}{5. \(\begin{array}{rr}(a) \\ \& (b) \\ \\ \\ (c)\end{array}\)} \& \(x=9, y=16\) \& B1 B1 \& (2) \\
\hline \& Initial flow \(=53-\) either finds a flow-augmenting route or demonstrates not enough saturated arcs for a minimum cut \& B1 B1 \& (2) \\
\hline \& \[
C \quad \longrightarrow 20
\] \& \& \\
\hline \& \& M1 A1 \& (2) \\
\hline \& e.g. IDA - 9 \& A1 \& \\
\hline \& \[
I F D A-24
\] \& A1 \& \\
\hline \& \[
\text { max flow - } 64
\] \& B1 \& (3) \\
\hline \multirow[t]{3}{*}{(d)

(e)} \& \& \&

\hline \& (11) 0 \& M1 A1 \& (2)

\hline \& Max flow - min cut \& M1 \&

\hline \multirow{3}{*}{(e)} \& Finds a cut $G C, A F, D F, D J, E I, E H$ value 64 \& A1 \& (2)

\hline \& Note: must not use supersource or supersink arcs. \& \&

\hline \& \& (13 m \& rks)

\hline
\end{tabular}

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2004 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
6. (a)	$\begin{aligned} & \text { Maximise } P=30 x+40 y \quad(\text { or } P=0.3 x+0.4 y) \\ & \text { subject to } \quad \\ & \quad x+y \geq 200 \\ & \\ & x+y \leq 500 \\ & \\ & x \geq \frac{20}{100}(x+y) \Rightarrow 4 x \geq y \\ & \\ & x \leq \frac{40}{100}(x+y) \Rightarrow 3 x \geq 2 y \end{aligned}$	B1 B1 B1 M1 A1 A1 (6)
(b)	 (NB: Graph looks OK onscreen at 75% magnification but may print out misaligned)	B1 ft $\begin{aligned} & (x+y=200 \\ & x+y=500) \end{aligned}$ B1 ft $(y=4 x)$ B1 ft $(2 y=3 x)$ B1 ft (shading) B1 (labels)

EDEXCEL DECISION MATHEMATICS D1 (6689) - JUNE 2004 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
$\begin{aligned} & \hline \text { 6. } \quad(c) \\ & \text { (cont.) } \end{aligned}$	Point testing or profit line Intersection of $y=4 x$ and $x+y=500$ $(100,400)$ Profit $=£ 190$ (units must be clear)	A1 A1 A1 (3) $(\mathbf{1 1}$ marks)

