Downloaded from http://www.thepaperbank.co.uk EDEXCEL 6679 MECHANICS M3 JANUARY 2004 PROVISIONAL MARK SCHEME

1.

(a) (1) $\quad T \cos 60^{\circ}=m \mathrm{~g} \Rightarrow T=2 m \mathrm{~g} * \quad \mathrm{~B} 1$
(b) $\quad(\leftrightarrow) T \sin 60^{\circ}=m r \omega^{2}$
[Omission of m is M0]
Attempt at $r=L \sin 60^{\circ}$
M1

$$
\left(T \sin 60^{\circ}=m L \sin 60^{\circ} \omega^{2}\right)
$$

$$
\omega=\sqrt{\frac{2 \mathrm{~g}}{L}}
$$

A1
(c) Applying Hooke's Law: $2 m \mathrm{~g}=\frac{\lambda}{\left(\frac{3}{5} L\right)}\left(L-\frac{2}{5} L\right) ; \quad \lambda=3 m \mathrm{~g} \quad$ M1;A1 [L in denominator is M0]
2.
(a) Integration of $-4 \mathrm{e}^{-2 t}$ w.r.t. t to give $v=2 \mathrm{e}^{-2 t} \quad(+c)$ B1

Using initial conditions to find $\mathrm{c}(-1)$ or $v-1=[f(t)]_{0}^{t}$ M1

$$
\begin{equation*}
v=2 \mathrm{e}^{-2 t}-1 \mathrm{~ms}^{-1} \tag{3}
\end{equation*}
$$

A1
(b) Integrating v w.r.t $t ; \quad x=-\mathrm{e}^{-2 t}-t(+\mathrm{c})$

M1;A1 $\sqrt{ }$
Using $t=0, x=0$ and finding value for $c(c=1)$
Finding t when $v=0 ; \quad t=1 / 2 \ln 2$ or equiv., 0.347 M1
[both f.t. marks dependent on v of form $a \mathrm{e}^{-2 t} \pm b$]

$$
\begin{equation*}
x=1 / 2(1-\ln 2) \mathrm{m} \text { or } 0.153 \mathrm{~m}(\mathrm{awrt}) \quad \mathrm{A} 1 \tag{6}
\end{equation*}
$$

[9]
[For A1, exact form must be two termed answer]

Downloaded from http://www.thepaperbank.co.uk EDEXCEL 6679 MECHANICS M3 JANUARY 2004 PROVISIONAL MARK SCHEME

3. (a) $F=\frac{k}{x^{2}} \quad$ [k may be seen as $\mathrm{G} m_{1} m_{2}$, for example]

M1

M1

A1 (3)
[Note: r may be used instead of x throughout, then $r \rightarrow x$ at end.]
(b) Equation of motion: $(m) a=(-) \frac{(m) g R^{2}}{x^{2}} ; \quad$ ($\left.m\right) v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\frac{(m) g R^{2}}{x^{2}}$ Integrating: $\quad 1 / 2 v^{2}=\frac{g R^{2}}{x} \quad(+\mathrm{c})$ or equivalent
[S.C: Allow A1 $\sqrt{ }$ if A0 earlier due to " + " only]
Use of $v^{2}=\frac{3 g R}{2}, x=R$ to find $c[c=-1 / 4 g R]$ or use in def. int.
[Using $x=0$ is M0]

$$
\left[v^{2}=\frac{2 g R^{2}}{x}-\frac{g R}{2}\right]
$$

Substituting $x=3 R$ and finding $V ; \quad V=\sqrt{\frac{g R}{6}}$
[Using $x=2 R$ is M0]
Alternative in (b)
Work/energy $(-) \int_{R}^{a} \frac{m \mathrm{~g} R^{2}}{x^{2}} \mathrm{~d} x ;=1 / 2 m v^{2}-1 / 2 m u^{2}$
Integrating: $\left[\frac{m g R^{2}}{x}-\frac{m g R^{2}}{R}\right]=1 / 2 m v^{2}-1 / 2 m \frac{3 g R}{2}$
Final 2 marks as scheme

M1;M1

M1A1M1
M1A1
[Conservation of energy scores 0]

Downloaded from http://www.thepaperbank.co.uk

 EDEXCEL 6679 MECHANICS M3 JANUARY 2004 PROVISIONAL MARK SCHEME4.

(a) Length of string $=\frac{10}{3} a \quad$ B1

$$
\begin{aligned}
\mathrm{EPE} & =\frac{\frac{1}{2} m g}{2 a}(L-a)^{2} \\
& =\frac{49}{36} m g a
\end{aligned}
$$

(b) Energy equation: $1 / 2 m v^{2}+\frac{\frac{1}{2} m g}{2 a} a^{2}=\left(\frac{49}{36} m g a\right)_{\mathrm{C}}$

$$
v=\frac{2}{3} \sqrt{5 g a} \text { or equivalent }
$$

(c) When string at angle θ to horizontal, length of string $=\frac{2 a}{\sin \theta}$
\Rightarrow Vert. Comp. of $T, T_{\mathrm{V},}=T \sin \theta=\frac{m g}{2 a}\left(\frac{2 a}{\sin \theta}-a\right) \sin \theta$

$$
=\frac{m g}{2}(2-\sin \theta)
$$

(\downarrow) $R+T_{\mathrm{V}}=m \mathrm{~g}$ and find $\mathrm{R}=\ldots$

$$
\begin{aligned}
\mathrm{R} & =m \mathrm{~g}-\frac{m g}{2}(2-\sin \theta)=\frac{m g}{2} \sin \theta \\
\Rightarrow & R>0(\text { as } \sin \theta>0), \text { so stays on table }
\end{aligned}
$$

[Alternative final 3 marks: As θ increases so T_{V} decreases M1 Initial $T_{\mathrm{V}}($ string at β to hor. $)=\frac{7}{10} m g \quad \mathrm{~A} 1$
$\Rightarrow T_{\mathrm{V}} \leq \frac{7}{10} m g<m \mathrm{~g}$, so stays on table A1]

Downloaded from http://www.thepaperbank.co.uk

 EDEXCEL 6679 MECHANICS M3 JANUARY 2004 PROVISIONAL MARK SCHEME5. (a)

Applying Hooke's Law correctly : e.g. $\quad T=\frac{48 x}{0.6}$
Equation of motion: (-) T=0.2 \ddot{x}

M1
M1
A1

Downloaded from http://www.thepaperbank.co.uk EDEXCEL 6679 MECHANICS M3 JANUARY 2004 PROVISIONAL MARK SCHEME

6.

(a)
Cylinder
Hemisphere
S

Masses	$(\rho) \pi(2 a)^{2}\left(\frac{3}{2} a\right)$	$(\rho) \frac{2}{3} \pi a^{3}$	$(\rho)\left(\frac{16}{3} \pi a^{3}\right)$	M1A1
	$\left[6 \pi a^{3}\right][18]$	$[2]$	$[16]$	
Distance of	$1 / 8 a$	$\frac{3}{8} a$	\bar{x}	B1B1

CM from O

$$
\text { Moments equation: } \left.6 \pi a^{3}(3 / 4 a)-\frac{2}{3} \pi a^{3}\left(\frac{3}{8} a\right)=\frac{16}{3} \pi a^{3} \bar{x}\right] \text { } \begin{gather*}
\bar{x}=\frac{51}{64} a
\end{gather*}
$$

$$
G \text { above " } A \text { " seen or implied }
$$ or $m g \sin \alpha(G X)=m g \cos \alpha(A X)$

$$
\tan \alpha=\frac{A X}{X G}=\frac{2 a}{\frac{3}{2} a-\bar{x}}
$$

$$
\begin{equation*}
\left[G X=\frac{3}{2} a-\frac{51}{64} a=\frac{45}{64} a, \tan \alpha=\frac{128}{45}\right] \quad \alpha=70.6^{\circ} \tag{3}
\end{equation*}
$$

(c) Finding F and $R: R=m g \cos \beta, F=m g \sin \beta$
Using $F=\mu R$ and finding $\tan \beta[=0.8]$ M1

$$
\begin{equation*}
\beta=38.7^{\circ} \tag{A1}
\end{equation*}
$$

(3)

Downloaded from http://www.thepaperbank.co.uk EDEXCEL 6679 MECHANICS M3 JANUARY 2004 PROVISIONAL MARK SCHEME

7. (a) Energy: $1 / 2 m v^{2}-1 / 2 m u^{2}=m g a \sin \theta$

M1

A1 (2)
(b) Radial equation: $T-m g \sin \theta=m \frac{v^{2}}{a}$

$$
T=\frac{3 m g}{2}(1+2 \sin \theta) \text { any form }
$$

(c) Setting $T=0$ and solving trig. equation; $(\sin \theta=-1 / 2) \Rightarrow \theta=210^{\circ} *$
(d) Setting $\boldsymbol{v}=\mathbf{0}$ in (a) and solving for θ $\sin \theta=-3 / 4$ so not complete circle

OR Substituting $\theta=270^{\circ}$ in (a); $v^{2}<0$ so not possible to complete
(e) No change in $\mathrm{PE} \Rightarrow$ no change in $\mathrm{KE}(\operatorname{Cof} \mathrm{E})$ so $v=u$
(f) When string becomes slack, $V^{2}=1 / 2 \mathrm{~g} a[\sin \theta=-1 / 2$ in (a) $]$ Using fact that horizontal component of velocity is unchanged

$$
\begin{aligned}
\sqrt{\frac{g a}{2}} \cos 60^{\circ} & =\sqrt{\frac{3 g a}{2}} \cos \phi \\
\cos \phi & =\sqrt{\frac{1}{12}} \Rightarrow \phi=73.2^{\circ}
\end{aligned}
$$

