EDEXCEL STATISTICS S2 (6684) - JUNE 2003

PROVISIONAL MARK SCHEME

Question number		Mark scheme		Marks	
1.	<i>(a)</i>	A random variable; that is, a function involving no unknown quantities	B1; B1	(2)	
	(b)	If all possible samples are taken; then their values will form a probability distribution called the sampling distribution	B1; B1	(2)	
			(4 marks)		
2.	<i>(a)</i>	λ is large or $\lambda > 10$	B1	(1)	
	<i>(b)</i>	$Y \sim N(30, 30)$ may be implied	B1		
		$Y \sim N(30, 30)$ may be implied $P(Y > 28) = 1 - P(Y \le 28.5)$	M1 A1		
		$= 1 - P\left(Z \le \frac{28.5 - 30}{\sqrt{30}}\right)$	M1 A1		
		$= 1 - P(Z \le -0.273)$			
		= 0.607	A1	(6)	
			(7 marks)		

EDEXCEL STATISTICS S2 (6684) – JUNE 2003

PROVISIONAL MARK SCHEME

EDEXCEL STATISTICS S2 (6684) – JUNE 2003

PROVISIONAL MARK SCHEME

Ques num		Mark scheme		Mark	S
4.	(<i>a</i>)	Fixed number of independent trials		B1 B1	
		2 outcomes		B1	
		Probability of success constant		B1	(4)
	<i>(b)</i>	$P(X=5) = \frac{2}{7}; P(X \neq 5) = \frac{5}{7}$	may be implied	B1; B1 ft	
		P(5 on sixth throw) = $\left(\frac{5}{7}\right)^2 \times \left(\frac{2}{7}\right)$	$p^n(1-p)$	M1 A1 ft	
		= 0.0531		A1	(5)
	(c)	P(exactly 3 fives in first eight throws) = $\binom{8}{3} \left(\frac{2}{7}\right)^3 \left(\frac{5}{7}\right)^3$	use of ${}^{n}C_{r}$ needed	M1 A1 ft	
		= 0.243		A1	(3)
				(12 ma	ırks)
5.	(<i>a</i>)	$f(x) = \begin{cases} 0.05 & 180 \le x \le 200\\ 0 & \text{otherwise} \end{cases}$		B1 B1	
		$f(x) \uparrow$			
		0.05	labels	B1	
			3 parts	B1	(4)
		$180 \qquad 200 \qquad x$			
	(<i>b</i>)(i)	$P(X \le 183) = 3 \times 0.05$		M1	
		= 0.15		A1	
	(ii)	P(X=183) = 0		B1	(3)
	(<i>c</i>)	IQR = 10		B1	(1)
	(<i>d</i>)	$0.05(200 - x); = 0.05(x - 180) \times 2$		M1; A1	
		200 - x = 2x - 360			
		$x = 186\frac{2}{3}$		A1	(3)
	(<i>e</i>)	$\frac{1}{3}$ of all cups of lemonade dispensed contains $186\frac{2}{3}$ ml or less		B1 B1 ft	(2)
		(or $\frac{2}{3}$ of all cups of lemonade dispensed contains $186\frac{2}{3}$ ml or more)			
				(13 ma	ırks)

EDEXCEL STATISTICS S2 (6684) – JUNE 2003

PROVISIONAL MARK SCHEME

Question number		Mark scheme	Marl	ks
6.	<i>(a)</i>	Po(1)		
		Each patient seen singly <i>or</i> patients with disease seen randomly <i>or</i> seen constant rate of once per week <i>or</i> each patient assumed independent of the next	B1	(3)
	<i>(b)</i>	$X \sim Po(4)$ may be implied	B1	
		$P(X > 3) = 1 - P(X \le 3)$	M1	
		= 1 - 0.4335	A1	
		= 0.5665	A1	(4)
	(<i>c</i>)	$H_0: \lambda = 6$	B1	
		$H_1: \lambda < 6$	B1	
		$P(X \le 2) = 0.0620$ $\alpha = 0.05 \implies$ critical region $X \le 1$	M1 A1	
		0.0620 > 0.05 2 not in critical region	M1	
		The number of patients with the disease seen by the doctor has not been reduced	A1	(6)
	(<i>d</i>)	This does not support the model as the disease will occur in outbreaks; the patients seen by the doctor are unlikely to be independent of each other/don't occur singly	B1; B1	(2)
			(15 m	arks)

PROVISIONAL MARK SCHEME

EDEXCEL STATISTICS S2 (6684) – JUNE 2003

Question number	Mark scheme	Marks	
7. (<i>a</i>)	$\int_{-1}^{0} k(x^2 + 2x + 1) dx = 1$ limits needed and =1	M1	
	$\left[k\left(\frac{x^3}{3} + x^2 + x\right)\right]_{-1}^{0} = 1$ attempt at integration	M1 A1	
	k = 3 (*)	A1 (4)	
(b)	$E(X) = \int_{-1}^{0} x f(x) dx$	M1	
	$= \int_{-1}^{0} (3x^3 + 6x^2 + 3x) dx$ limits needed	A1	
	$= \left[\frac{3x^4}{4} + 2x^3 + \frac{3x^2}{2}\right]_{-1}^{0}$ integration and substituting limits	M1	
	$=-\frac{1}{4}$	A1 (4)	
(c)	$\int_{-1}^{x_0} (3x^3 + 6x^2 + 3x) dx = \left[x^3 + 3x^2 + 3x \right]_{-1}^{x_0}$	M1	
	$= x_0 + 3x_0^2 + 3x_0 + 1$	A1	
	F(x) = $\begin{cases} 0 & x < -1 \\ x^3 + 3x^2 + 3x + 1 & -1 \le x \le 0 \\ 1 & x > 0 \end{cases}$	B1 B1 (4)	
(<i>d</i>)	P(-0.3 < X < 0.3) = F(0.3) - F(-0.3)	M1	
	= 1 - 0.343	A1	
	= 0.657	A1 (3)	
		(15 marks)	