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1. (a) Simplify 
xx

x
+
++

2

2 34x .                      

(2) 

(b) Find the value of x for which log2 (x2 + 4x + 3) – log2 (x2 + x) = 4. 
                              (4) 

 
 

2. The functions f and g are defined by 
 
    f: xa x2 – 2x + 3, x ∈ ℝ,  0 ≤ x ≤ 4, 
 
    g: xa λx + 1, where λ  is a constant, x ∈ ℝ. 
 

(a) Find the range of f.  
          (3) 

(b) Given that gf(2) = 16, find the value of λ.  
(3) 

 
 

3.  The expansion of (2 – px)6 in ascending powers of x, as far as the term in x2, is 
 
      64 + Ax + 135x2.  
 

Given that p > 0, find the value of p and the value of A. 

 (7) 
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4.      Figure 1 
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Figure 1 shows a sketch of the curve with equation y = f(x), −1 ≤ x ≤ 3. The curve touches 
the x-axis at the origin O, crosses the x-axis at the point A(2, 0) and has a maximum at the 
point B( 3

4 , 1).     
 
 In separate diagrams, show a sketch of the curve with equation  
 

(a) y = f(x + 1),  
(3) 

 (b)  y = |f(x)|,  
(3) 

 (c)  y = f(|x|),  
(4) 

 
 marking on each sketch the coordinates of points at which the curve 
 

(i) has a turning point, 
 
(ii) meets the x-axis.  
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5. (a) Sketch, on the same set of axes, the graphs of 
 
      y = 2 – e−x  and y = √x. 

(3) 
 

[It is not necessary to find the coordinates of any points of intersection with the axes.] 
 
Given that f(x) = e−x + √x – 2,  x ≥ 0, 
 
(b) explain how your graphs show that the equation f(x) = 0 has only one solution,  

(1) 

 (c) show that the solution of f(x) = 0 lies between x = 3 and x = 4.  
(2) 

 
 The iterative formula xn + 1 = (2 – )nx−e 2 is used to solve the equation f(x) = 0. 
 

(d) Taking x0 = 4, write down the values of x1, x2, x3 and x4, and hence find an approximation to 
the solution of f(x) = 0, giving your answer to 3 decimal places.  

(4) 
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6.       Figure 2 
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Figure 2 shows part of the curve with equation y = 1 + 
x
c , where c is a positive constant. 

 
The point P with x-coordinate p lies on the curve. Given that the gradient of the curve at P is −4, 
 
(a) show that c = 4p2. 

 (2) 
 

Given also that the y-coordinate of P is 5,  
 
(b) prove that c = 4.  

(2) 
 

The region R is bounded by the curve, the x-axis and the lines x = 1 and x = 2, as shown in Fig. 2. 
The region R is rotated through 360° about the x-axis. 
 
(c) Show that the volume of the solid generated can be written in the form π(k + q ln 2), where k 

and q are constants to be found. 
(7) 
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7.       Figure 3 
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The curve C with equation y = 2ex + 5 meets the y-axis at the point M, as shown in Fig. 3. 
 

 (a) Find the equation of the normal to C at M in the form ax + by = c, where a, b and c are 
integers. 

 (4) 
 

This normal to C at M crosses the x-axis at the point N(n, 0). 
 
(b) Show that n = 14.  

(1) 
 

The point P(ln 4, 13) lies on C. The finite region R is bounded by C, the axes and the line PN, as 
shown in Fig. 3. 
 
(c) Find the area of R, giving your answers in the form p + q ln 2, where p and q are integers to 

be found. 
(7) 
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8. (i) Given that cos(x + 30)° = 3 cos(x – 30)°, prove that tan x° = −
2
3 .  

(5) 
 

(ii) (a) Prove that 
θ
θ

2sin
2cos−1  ≡ tan θ . 

(3) 

 (b) Verify that θ = 180° is a solution of the equation sin 2θ = 2 – 2 cos 2θ.  
(1) 

 (c) Using the result in part (a), or otherwise, find the other two solutions, 0 < θ < 360°, of 
the equation using sin 2θ = 2 – 2 cos 2θ. 

(4) 

 
END 
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