Question number	Mark scheme	Marks
1.	$\begin{aligned} & \text { e.g. } C-2=A-5=E-4 \text { cs } C=2-A=5-E=4 \\ & F-1=B-3=D-6 \text { cs } F=1-B=3-D=6 \\ & \therefore A=1, B=3, C=2, D=6, E=4, F=1 \end{aligned}$	M1 A1 M1 A1 A1 \quad (5) (5 marks)
2. (a) (b)	Each arc contributes 2 to the sum of degrees, hence this sum must be even. Therefore there must be an even (or zero) number of vertices of odd degree. If $x>9,10 \frac{1}{2} x-26=100$, $\Rightarrow x=12$ (If $x<9,11 \frac{1}{2} x-35=100 \Rightarrow x=11 \frac{17}{23}$ inconsistent)	B2, 1, 0 (2) B1, M1 A1 A1 (4) (6 marks)
3. (a) (b) (i) (ii)	For example: - In Prim the tree always 'grows' in a connected fashion; - In Kruskal the shortest arc is added (unless it completes a cycle), in Prim the nearest unattached vertex is added; - There is no need to check for cycles when using Prim; - Prim can be easily used when network given is matrix form Either $A C, A B, B D, B E, E F, E G$ (if starts at A or C) or $B D, B A, A C, B E, E F, E G$ (if starts at B or D) or $E F, E G, B E, B D, B A, A C$ (if starts at E or F) or $G E, E F, B E, B D, B A, A C$ (if starts at G) $E F, A C, B D, B A, E G, B E$	B3, 2, 1, 0 (3) M1 A1 M1 A1 (4) (7 marks)

Question number	Mark scheme	Marks
4. (a)	For example	
	$\begin{array}{llllllllllll}R & P & B & Y & T & K & M & H & W & G\end{array}$	M1 A1
		$\mathrm{A} 1 \mathrm{ft}$
	B (G) H K R P M T Y W	$\mathrm{A} 1 \mathrm{ft}$
	(B) G H H S (M) P R T T W	A 1 ft
(b)	$\begin{array}{llllllllll} B & G & H & K & M & P & R & T & W & Y \end{array}$	
	$\left[\frac{10+1}{2}\right]=6$ Palmer; reject Palmer \rightarrow Young	M1 A1
	$\left[\frac{5+1}{2}\right]=3$ Halliwell; reject Boase \rightarrow Halliwell	A1
	$\left[\frac{4+5}{2}\right]=5$ Morris; reject Morris	
	List reduces to Kenney - name found, search complete	A1 (4)
		(9 marks)

Question number	Mark scheme	Marks
$6 .$ (d)	For example:	
(cont.) ${ }^{\text {a }}$	Point testing: test all (5) points in feasible region find profit at each and select point yielding maximum	B1
	Profit line: draw profit lines with gradient $-\frac{3}{5}$ select point on profit line furthest from the origin	B1 (2)
	Optimal point is (6, 7); make 6 Oxford and 7 York	M1; A1 ft
(e)	Profit $=£ 5300$	A 1 ft
(f)	The line $3.5 x+4 y=49$ passes through $(6,7)$ so reduce finishing by $\underline{7}$ hours	M1 A1 ft A1
		(3)
		(15 marks)

