EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2003
Advanced Subsidiary / Advanced Level
General Certificate of Education
Subject PURE MATHEMATICS 6671
Paper No. P1

Question number	Scheme	Marks
1.	(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=10 \times \frac{3}{2} x^{\frac{1}{2}} \quad\left(=15 x^{\frac{1}{2}}\right)$ (b) $7 x+4 x^{\frac{5}{2}}+C$	M1 A1 M1 A2(1,0)
2.	(a) Scales ($-1,1$ and 360) Shape, position (b) $\quad(0,0.5) \quad(150,0) \quad(330,0)$ (c) $(x+30=) 210^{\circ}$ or $330^{\circ} \quad$ One of these $x=180^{\circ}, 300^{\circ}$ M: Subtract 30, A: Both	B1 B1 B1 B1 B1 B1 M1 A1
3.	(a) $\quad 3^{x}=3^{2(y-1)} \quad x=2(y-1)$ (b) $(2 y-2)^{2}=y^{2}+7, \quad 3 y^{2}-8 y-3=0$ $(3 y+1)(y-3)=0, y=\ldots \quad($ or correct substitution in formula) $y=-\frac{1}{3}, \quad y=3$ $x=-\frac{8}{3}, \quad x=4$	M1 A1 M1, A1 M1 A1 M1 A1ft

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
January 2003
Advanced Subsidiary / Advanced Level
General Certificate of Education
Subject PURE MATHEMATICS 6671
Paper No. P1

Question number	Scheme	Marks
4.	(a) $\frac{a}{1-r}=\frac{1200}{1-r}=960$ $\begin{equation*} 960(1-r)=1200 \quad r=-\frac{1}{4} \tag{*} \end{equation*}$ (b) $\mathrm{T}_{9}=1200 \times(-0.25)^{8} \quad$ (or T_{10}) $\begin{array}{r} \text { Difference }=\mathrm{T}_{9}-\mathrm{T}_{10}=0.0183105 \ldots-(-0.0045776 \ldots) \\ =0.023 \quad(\text { or }-0.023) \end{array}$ (c) $\quad \mathrm{S}_{n}=\frac{1200\left(1-(-0.25)^{n}\right)}{1-(-0.25)}$ (d) Since n is odd, $(-0.25)^{\mathrm{n}}$ is negative, so $\quad S_{n}=960\left(1+0.25^{\mathrm{n}}\right)$	M1 A1 A1 M1 M1 A1 M1 A1 M1 A1

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
January 2003
Advanced Subsidiary / Advanced Level
General Certificate of Education
Subject PURE MATHEMATICS 6671
Paper No. P1

Question number	Scheme	Marks
5.	(a) $\begin{aligned} & \frac{\mathrm{d} C}{\mathrm{~d} v}=-160 v^{-2}+\frac{2 v}{100} \\ & -160 v^{-2}+\frac{2 v}{100}=0 \\ & v^{3}=8000 \quad v=20 \end{aligned}$ (b) $\quad \frac{\mathrm{d}^{2} C}{\mathrm{~d} v^{2}}=320 v^{-3}+\frac{1}{50}$ >0, therefore minimum (c) $\quad v=20: C=\frac{160}{20}+\frac{400}{100}=12$ $\text { Cost }=250 \times 12=£ 30$	M1 A1 M1 M1 A1 M1 A1 B1ft M1 A1

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2003
Advanced Subsidiary / Advanced Level
General Certificate of Education
Subject PURE MATHEMATICS 6671
Paper No. P1

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2003
Advanced Subsidiary / Advanced Level
General Certificate of Education
Subject PURE MATHEMATICS 6671
Paper No. P1

Question number	Scheme	Marks
7.	(a) $B M=\sqrt{ }\left(7^{2}+24^{2}\right)=25$ (b) $\tan \alpha=\frac{7}{24}$ or equiv. and $\angle B M C=2 \alpha$, or cosine rule $\angle B M C=0.568$ radians (c) $\quad \triangle A B M: \quad \frac{1}{2}(14 \times 24)\left(=168 \mathrm{~mm}^{2}\right)($ or other appropriate $\Delta)$ Sector: $\quad \frac{1}{2}\left(25^{2} \times 0.568\right)$ Total: " $168+168+177.5 "=513 \mathrm{~mm}^{2}($ or 514 , or 510$)$ (d) Volume $=$ " $513 " \times 85 \mathrm{~mm}^{3} \quad(\mathrm{M}$ requires unit conversion) M 1 $=44 \mathrm{~cm}^{3}$	B1 M1 A1 A1 B1 M1 A1 M1 A1

January 2003
Advanced Subsidiary / Advanced Level
General Certificate of Education
Subject PURE MATHEMATICS 6671
Paper No. P1

Question number	Scheme	Marks
8.	(a) $A: y=1 \quad B: y=4$ (b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x}{25} \quad=\frac{2}{5}$ where $x=5$ Tangent: $y-1=\frac{2}{5}(x-5) \quad(5 y=2 x-5)$ (c) $x=5 y^{\frac{1}{2}}$ (d) Integrate: $\quad \frac{5 y^{3 / 2}}{3 / 2}\left(=\frac{10 y^{3 / 2}}{3}\right)$ $[]^{4}-[]_{1}=\left(\frac{10 \times 4^{3 / 2}}{3}\right)-\left(\frac{10 \times 1^{3 / 2}}{3}\right),=\frac{70}{3} \quad\left(23 \frac{1}{3}, 23.3\right) \quad \text { M1 } f$	B1 M1 A1 M1 A1 B1 B1 1 ft 1, A1
	Alternative for (d): \quad Integrate: $\quad \frac{x^{3}}{75}$ $\text { Area }=(10 \times 4)-(5 \times 1)-\left(\frac{1000}{75}-\frac{125}{75}\right),=\frac{70}{3} \quad\left(23 \frac{1}{3}, 23.3\right)$ In both (d) schemes, final M is scored using candidate's " 4 " and " 1 ".	M1 A1 M1 A1, A1

