Stewart House 32 Russell Square London WC1B 5DN

January 2003

Advanced Subsidiary / Advanced Level

General Certificate of Education

Subject PURE MATHEMATICS 6671

Question number	Scheme	Marks
1.	(a) $\frac{d y}{d x} = 10 \times \frac{3}{2} x^{\frac{1}{2}} \left(= 15 x^{\frac{1}{2}} \right)$	M1 A1
	(b) $7x + 4x^{\frac{5}{2}} + C$	M1 A2(1,0)
2.		B1 B1
	(b) (0, 0.5) (150, 0) (330, 0)	B1 B1 B1
	(c) $(x + 30 =) 210^{\circ} \text{ or } 330^{\circ}$ One of these	B1
	$x = 180^{\circ}$, 300° M: Subtract 30, A: Both	M1 A1
3.	(a) $3^x = 3^{2(y-1)}$ $x = 2(y-1)$ (*)	M1 A1
	(b) $(2y-2)^2 = y^2 + 7$, $3y^2 - 8y - 3 = 0$	M1, A1
	(3y+1)(y-3) = 0, y = (or correct substitution in formula)	M1
	$y = -\frac{1}{3}, \qquad y = 3$	A1
	$x = -\frac{8}{3}, \qquad x = 4$	M1 A1ft

Stewart House 32 Russell Square London WC1B 5DN

January 2003

Advanced Subsidiary / Advanced Level

General Certificate of Education

Subject PURE MATHEMATICS 6671

Question number		Marks	
4.	(a)	$\frac{a}{1-r} = \frac{1200}{1-r} = 960$	M1 A1
		960 $(1 - r) = 1200$ $r = -\frac{1}{4}$ (*)	A1
	(b)	$T_9 = 1200 \times (-0.25)^8$ (or T_{10})	M1
		Difference = $T_9 - T_{10} = 0.0183105 (-0.0045776)$	M1
		= 0.023 (or -0.023)	A1
	(c)	$S_n = \frac{1200(1 - (-0.25)^n)}{1 - (-0.25)}$	M1 A1
	(d)	Since <i>n</i> is odd, $(-0.25)^n$ is negative,	M1
		so $S_n = 960 (1 + 0.25^n)$ (*)	A1

Stewart House 32 Russell Square London WC1B 5DN

January 2003

Advanced Subsidiary / Advanced Level

General Certificate of Education

Subject PURE MATHEMATICS 6671

Question number		Scheme	Marks
5.	(a)	$\frac{\mathrm{d} C}{\mathrm{d} v} = -160v^{-2} + \frac{2v}{100}$	M1 A1
		$-160v^{-2} + \frac{2v}{100} = 0$	M1
		$v^3 = 8\ 000$ $v = 20$	M1 A1
	(b)	$\frac{d^2 C}{d v^2} = 320 v^{-3} + \frac{1}{50}$	M1
		> 0, therefore minimum	A1
	(c)	$v = 20: C = \frac{160}{20} + \frac{400}{100} = 12$	B1ft
		$Cost = 250 \times 12 = \text{\pounds}30$	M1 A1

Stewart House 32 Russell Square London WC1B 5DN

January 2003

Advanced Subsidiary / Advanced Level

General Certificate of Education

Subject PURE MATHEMATICS 6671

Question number		Scheme			Marks
6.	(a)	P: $x = 0$	<i>y</i> = -2		B1
		Mid-point:	$\left(\frac{\left(0+5\right)}{2}\right)$	$,\frac{\left(-2-3\right)}{2}\right) = \left(\frac{5}{2},-\frac{5}{2}\right)$	M1 A1ft
	(b)	Gradient of	l_1 is $\frac{3}{2}$, so grad	ient of l_2 is $-\frac{2}{3}$	B1
		$l_2: y - (-$	$-3) = -\frac{2}{3}(x-5)$)	M1 A1ft
		2x + 3	3y = 1		A1
	(c)	Solving:	3x - 2y = 4		
			2x + 3y = 1	$x = \frac{14}{13}$	M1 A1
				$y = \frac{-5}{13}$	M1 A1ft

Stewart House 32 Russell Square London WC1B 5DN

January 2003

Advanced Subsidiary / Advanced Level

General Certificate of Education

Subject PURE MATHEMATICS 6671

Question number		Scheme			
7.	(a)	$BM = \sqrt{(7^2 + 24^2)} = 25 \tag{(*)}$	B1		
	(b)	$\tan \alpha = \frac{7}{24}$ or equiv. and $\angle BMC = 2\alpha$, or cosine rule	M1 A1		
		$\angle BMC = 0.568 \text{ radians}$ (*)	A1		
	(c)	ΔABM : $\frac{1}{2}(14 \times 24)$ (= 168 mm ²) (or other appropriate Δ)	B1		
		Sector: $\frac{1}{2}(25^2 \times 0.568)$	M1 A1		
		Total: " $168 + 168 + 177.5$ " = 513 mm ² (or 514, or 510)	M1 A1		
	(d)	Volume = " 513 " × 85 mm^3 (M requires unit conversion) M1			
		$=44 \text{ cm}^3$ A1			

January 2003

Advanced Subsidiary / Advanced Level

General Certificate of Education

Subject PURE MATHEMATICS 6671

Question number	Scheme	Marks
8.	(a) $A: y = 1$ $B: y = 4$	B1
	(b) $\frac{d y}{d x} = \frac{2x}{25}$ $= \frac{2}{5}$ where $x = 5$	M1 A1
	Tangent: $y - 1 = \frac{2}{5}(x - 5)$ (5y = 2x - 5)	M1 A1
	$(c) \qquad x = 5y^{\frac{1}{2}}$	B1 B1
	(d) Integrate: $\frac{5y^{3/2}}{3/2} \left(= \frac{10y^{3/2}}{3} \right)$ M1 A	1ft
	$[]^{4} - []_{1} = \left(\frac{10 \times 4^{\frac{3}{2}}}{3}\right) - \left(\frac{10 \times 1^{\frac{3}{2}}}{3}\right), = \frac{70}{3} (23\frac{1}{3}, 23.3) \text{M1 A}$	A1, A1
	<u>Alternative for (d):</u> Integrate: $\frac{x^3}{75}$	M1 A1
	Area = $(10 \times 4) - (5 \times 1) - \left(\frac{1000}{75} - \frac{125}{75}\right), = \frac{70}{3}$ (23 $\frac{1}{3}$, 23.3)	M1 A1, A1
	In both (d) schemes, final M is scored using <u>candidate's</u> "4" and "1".	