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Express zw in the form r (cos   + i sin  ), r > 0,    <   < .  

 (3) 
 
 

2. (a) Sketch, on the same axes, the graphs with equation y = 2x – 3, and the line with equation 
y = 5x – 1.  

          (2) 

(b) Solve the inequality 2x – 3 < 5x – 1. 
(3) 
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 (5) 
 

4.      f(x) = 2 sin 2x + x – 2. 
 

The root  of the equation f(x) = 0 lies in the interval [2, ].  
 
(a) Using the end points of this interval find, by linear interpolation, an approximation to .  

(4) 

 (b) Taking 2.8 as a first approximation to , apply the Newton-Raphson procedure once to f(x) 
to find a second approximation to , giving your answer to 3 significant figures. 

(5) 
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5. (a) Use the substitution y = vx to transform the equation  
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, x > 0   (I) 

  into the equation 

               x
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d

d
 = (2 + v)2.     (II) 

(4) 

 (b) Solve the differential equation II to find v as a function of x. 
(5) 

 (c) Hence show that 

     y = 2x  
cx

x

ln
, where c is an arbitrary constant, 

  is a general solution of the differential equation I. 

(1) 

 

6. Given that z = 3 – 3i express, in the form a + ib, where a and b are real numbers, 
 
 (a) z2, 

(2) 

 (b) 
z

1
. 

(2) 

 (c) Find the exact value of each of z,z2 and 
z

1
. 

(2) 

 The complex numbers z, z2 and 
z

1
 are represented by the points A, B and C respectively on an 

Argand diagram. The real number 1 is represented by the point D, and O is the origin. 
  

(d) Show the points A, B, C and D on an Argand diagram.  
(2) 

(e) Prove that     OAB is similar to    OCD.  
(3) 
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7. (a) Find the value of  for which x cos 3x is a particular integral of the differential equation 

      
2

2

d

d

x

y
+ 9y = 12 sin 3x. 

(4) 

(b) Hence find the general solution of this differential equation. 
(4) 

 

The particular solution of the differential equation for which y = 1 and 
x

y

d

d
 = 2 at x = 0, is y = g(x). 

 
 (c) Find g(x). 

(4) 

(d) Sketch the graph of y = g(x), 0  x  .  
(2) 
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8.       Figure 1 
 

 
 
 Figure 1 shows a sketch of the cardioid C with equation r = a(1 + cos  ),  <    . Also 

shown are the tangents to C that are parallel and perpendicular to the initial line. These tangents 
form a rectangle WXYZ. 

 
 (a) Find the area of the finite region, shaded in Fig. 1, bounded by the curve C.  

 (6) 

(b) Find the polar coordinates of the points A and B where WZ touches the curve C.  
(5) 

(c) Hence find the length of WX. 
(2) 

 

Given that the length of WZ is 
2

33 a
, 

 
(d) find the area of the rectangle WXYZ. 

(1) 
 

A heart-shape is modelled by the cardioid C, where a = 10 cm. The heart shape is cut from the 
rectangular card WXYZ, shown in Fig. 1. 
 
(e) Find a numerical value for the area of card wasted in making this heart shape.  

(2) 

 
END 
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