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1. The function f is given by    
 

f(x) = 
)1)(2(

)1(3



xx

x
, x  ℝ, x  2, x  1. 

 
 (a) Express f(x) in partial fractions. 

                              (3) 

(b) Hence, or otherwise, prove that f (x) < 0 for all values of x in the domain. 
(3)   

 
 

2.      Figure 1 
 
 

y 
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 The circle C, with centre (a, b) and radius 5, touches the x-axis at (4, 0), as shown in Fig. 1. 
 

(a) Write down the value of a and the value of b.  
                      (1) 

 (b) Find a cartesian equation of C. 
(2) 

 
 A tangent to the circle, drawn from the point P(8, 17), touches the circle at T. 
 
 (c) Find, to 3 significant figures, the length of PT. 

(3) 
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3.     f(n) = n3 + pn2 + 11n + 9, where p is a constant. 
 

(a) Given that f(n) has a remainder of 3 when it is divided by (n + 2), prove that p = 6 .  
(2) 

(b) Show that f(n) can be written in the form (n + 2)(n + q)(n + r) + 3, where q and r are integers 
to be found.  

(3) 

(c) Hence show that f(n) is divisible by 3 for all positive integer values of n.  
(2) 

 
 
4. (a) Expand (1 + 3x)2, x < 3

1 , in ascending powers of x up to and including the term in x3, 

simplifying each term. 
 (4)  

(b) Hence, or otherwise, find the first three terms in the expansion of 
2)31(

4

x

x




 as a series in 

ascending powers of x. 
(4) 

 
 
5. Liquid is poured into a container at a constant rate of 30 cm3 s1. At time t seconds liquid is 

leaking from the container at a rate of 15
2 V cm3 s1, where V cm3 is the volume of liquid in the 

container at that time.  
 

(a) Show that 

15
t

V

d

d
 = 2V – 450. 

(3) 
 

Given that V = 1000 when t = 0, 
 
(b) find the solution of the differential equation, in the form V = f(t).  

(7) 

(c) Find the limiting value of V as t  . 
(1) 

 



6. Referred to a fixed origin O, the points A and B have position vectors (i + 2j – 3k) and (5i – 3j) 
respectively.  

 
(a) Find, in vector form, an equation of the line l1 which passes through A and B.  

(2) 
 

The line l2 has equation r= (4i – 4j + 3k) +  (i – 2j + 2k), where  is a scalar parameter.  
 
(b) Show that A lies on l2. 

(1) 

(c) Find, in degrees, the acute angle between the lines l1 and l2. 
 (4) 

 
The point C with position vector (2i – k) lies on l2.   
 
(d) Find the shortest distance from C to the line l1. 

(4) 

 
 
7.      Figure 2  
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Figure 2 shows the curve with equation y = 2
1

x e2x. 
 
(a) Find the x-coordinate of M, the maximum point of the curve. 

(5) 
 
The finite region enclosed by the curve, the x-axis and the line x = 1 is rotated through 2 about 
the x-axis.  
 
(b) Find, in terms of  and e, the volume of the solid generated.  

(7) 
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8. (a) Use the identity for cos (A + B) to prove that cos  2A = 2 cos2 A – 1. 
(2) 

 
(b) Use the substitution x = 22 sin   to prove that 
 


 

6

2

2 d)8( xx  = 3
1 ( + 33 – 6). 

(7) 
 
A curve is given by the parametric equations 

x = sec  ,   y = ln(1 + cos 2 ),   0   < 
2


. 

(c) Find an equation of the tangent to the curve at the point where  = 
3


.  

(5) 
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