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 as a single fraction in its simplest form. 

 (6) 
 
 

2. The first three terms in the expansion, in ascending powers of x, of (1 + px)n, are 1 – 18x + 36p2x2. 
Given that n is a positive integer, find the value of n and the value of p.  

          (7) 

 
3.  (a) Sketch the graph of y  = 2x + a, a > 0, showing the coordinates of the points where the 

graph meets the coordinate axes.   
(2) 

(b) On the same axes, sketch the graph of y = 
x

1
.  

 (1) 

 (c) Explain how your graphs show that there is only one solution of the equation 

       x2x + a  1 = 0. 
(1) 

 (d) Find, using algebra, the value of x for which x2x + 1  1 = 0. 
(3) 
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4.       Figure 1     
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Figure 1 shows part of the curve with equation y = 1 + 
x2

1
. The shaded region R, bounded by 

the curve, that x-axis and the lines x = 1 and x = 4, is rotated through 360 about the x-axis. Using 
integration, show that the volume of the solid generated is  (5 + 2

1 ln 2).   

(8) 
 



5.      Figure 2 
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Figure 2 shows the cross-section of a road tunnel and its concrete surround. The curved section of 

the tunnel is modelled by the curve with equation y = 8 







10
sin

x
, in the interval 0  x  10. 

The concrete surround is represented by the shaded area bounded by the curve, the x-axis and the 
lines x = 2, x = 12 and y = 10. The units on both axes are metres.  

 
(a) Using this model, copy and complete the table below, giving the values of y to 2 decimal 

places.  
 

x 0 2 4 6 8 10 

y 0 6.13    0 

 
(2) 

 The area of the cross-section of the tunnel is given by 


.  xy d
10

0

 (b) Estimate this area, using the trapezium rule with all the values from your table.  
(4) 

 (c) Deduce an estimate of the cross-sectional area of the concrete surround.  
(1) 

 (d) State, with a reason, whether your answer in part (c) over-estimates or under-estimates the 
true value. 

(2) 
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6. The curve with equation y = ln 3x crosses the x-axis at the point P (p, 0). 
 
(a) Sketch the graph of y = ln 3x, showing the exact value of p.  

 (2) 

The normal to the curve at the point Q, with x-coordinate q, passes through the origin.  
 
(b) Show that x = q is a solution of the equation x2 + ln 3x = 0.  

(4) 

 (c) Show that the equation in part (b) can be rearranged in the form x = 
2

e3
1 x . 

(2) 

(d) Use the iteration formula xn + 1 = 
2

e3
1 nx , with x0 = 3

1 , to find x1, x2, x3 and x4. Hence write 

down, to 3 decimal places, an approximation for q.   
(3) 

 
7. (a) Express sin x + 3 cos x in the form R sin (x + ), where R > 0 and 0 <  < 90.  

 (4) 

(b) Show that the equation sec x + 3 cosec x = 4 can be written in the form 

     sin x + 3 cos x = 2 sin 2x.  
(3) 

(c) Deduce from parts (a) and (b) that sec x + 3 cosec x = 4 can be written in the form  

       sin 2x – sin (x + 60) = 0. 
(1) 

(d) Hence, using the identity sin X – sin Y = 2 cos 
2

sin
2

YXYX 
, or otherwise, find the 

values of x in the interval 0  x  180, for which sec x + 3 cosec x = 4.  
(5) 

 



8.       Figure 3 
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Figure 3 shows a sketch of the curve with equation y = f(x), x  0. The curve meets the coordinate 
axes at the points (0, c) and (d, 0). 
 
In separate diagrams sketch the curve with equation  
 
(a) y = f1(x),  

(2) 

(b) y = 3f(2x). 
(3) 

Indicate clearly on each sketch the coordinates, in terms of c or d, of any point where the curve 
meets the coordinate axes.  
 
Given that f is defined by  

     f : x  3(2x )  1,  x  ℝ,  x  0, 

(c) state 

 (i) the value of c, 

 (ii) the range of f. 
  (3) 

(d) Find the value of d, giving your answer to 3 decimal places.  
(3) 

The function g is defined by  

     g : x  log2 x,  x  ℝ,  x  1. 
 
(e) Find fg(x), giving your answer in its simplest form. 

(3) 
 

END 
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