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y  as a single fraction in its simplest form. 

                              (5)   
 

 
2. (a) Using the substitution u = 2x, show that the equation 4x – 2(x + 1) − 15 = 0 can be written in the 

form u2 – 2u – 15 = 0.  
                      (2) 

 
 (b) Hence solve the equation 4x – 2(x + 1) − 15 = 0, giving your answers to 2 decimals places. 

(4) 
 
 

3.  (a) Express 1.5 sin 2x + 2 cos 2x in the form R sin (2x + α), where R > 0 and 0 < α < π2
1 , giving 

your values of R and α to 3 decimal places where appropriate.  
(4) 

(b) Express 3 sin x cos x + 4 cos2 x in the form a cos 2x + b sin 2x + c, where a, b and c are 
constants to be found.  

(2) 

(c) Hence, using your answer to part (a), deduce the maximum value of 3 sin x cos x + 4 cos2 x.  
(2) 

 
 
4. The sequence u1, u2, u3, …, un  is defined by the recurrence relation 
 
     un +1 = pun + 5, u1 = 2, where p is a constant. 
 

Given that u3 = 8, 
 
(a) show that one possible value of p is 2

1  and find the other value of p.  
(5) 

 
Using p = 2

1 , 
 
(b) write down the value of log2 p.   

 (1) 
 

 Given also that log2 q = t,   
 

(c) express log2 













q
p 3

 in terms of t. 

(3) 
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5. The curve C with equation y = p + qex, where p and q are constants, passes through the point 
(0, 2). At the point P(ln 2, p + 2q) on C, the gradient is 5.  

 
(a) Find the value of p and the value of q.  

(5) 
 

The normal to C at P crosses the x-axis at L and the y-axis at M. 
 
(b) Show that the area of     OLM, where O is the origin, is approximately 53.8.  

(3) 

 
6.      Figure 1 
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Figure 1 shows a sketch of the curve with equation y  = e−x − 1.  
 
(a) Copy Fig. 1 and on the same axes sketch the graph of y = 2

1 x – 1. Show the coordinates of 
the points where the graph meets the axes.  

(2) 

The x-coordinate of the point of intersection of the graph is α. 
 
(b) Show that x = α  is a root of the equation x + 2e−x − 3 = 0. 

(3) 

(c) Show that −1 < α < 0. 
 (2) 

The iterative formula xn + 1 = −ln[ 2
1 (3 – xn)] is used to solve the equation x + 2e−x − 3 = 0. 

 
(d) Starting with x0 = −1, find the values of x1 and x2. 

(2) 

(e) Show that, to 2 decimal places, α = −0.58. 
(2) 
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7.      Figure 2  
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Figure 2 shows part of the curve with equation y = x2 + 2. 
 
The finite region R is bounded by the curve, the x-axis and the lines x = 0 and x = 2.  
 
(a) Use the trapezium rule with 4 strips of equal width to estimate the area of R.  

(5) 

(b) State, with a reason, whether your answer in part (a) is an under-estimate or over-estimate of 
the area of R.  

(1) 

(c) Using integration, find the volume of the solid generated when R is rotated through 360° 
about the x-axis, giving your answer in terms of π.   

(6) 

R
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8. The function f is defined by f: x ↦ 
3
13

−
−

x
x , x ∈ ℝ, x ≠ 3.  

 
(a) Prove that f 

−1(x) = f(x) for all x ∈ ℝ, x ≠ 3. 
(3) 

 
(b) Hence find, in terms of k, ff(k), where x ≠ 3. 

(2) 
 

Figure 3 
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Figure 3 shows a sketch of the one-one function g, defined over the domain −2 ≤ x ≤ 2. 
 
(c) Find the value of fg(−2).  

(3) 

(d) Sketch the graph of the inverse function g−1 and state its domain. 
(3) 

The function h is defined by h: x ↦ 2g(x – 1). 
   
(e) Sketch the graph of the function h and state its range. 

(3) 
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