PROVISIONAL MARK SCHEME

Question Number	Scheme	Mar	ks
1.	$P(Not 6) = 1 - \frac{1}{6} = \frac{5}{6}$	B1	(1)
	P(6 on third throw) = $\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} = 0.116$ 3 probabilities multiplied	M1 A1ft	
	$=\frac{25}{216}=0.1157$ (accept 0.116)	A1	(3)
		(4 m	arks)
2.	Observe real world problem	B1	
	Devise a statistical model and collect data	B1	
	Compare observed against expected outcomes and test the model	B1	
	Refine model if necessary	B1	(4)
		(4 m	arks)
3. (<i>a</i>)	$P(B \mid A) = Probability of B, given A has occurred$	B1, B1	(2)
(b)	A B ε A & B A & B	B1	
	no overlap	B1	(2)
	$P(\text{Amber is late}) = 0.5 \times 0.02$	M1	
	= 0.01	A1 cao	(2)
	$\begin{array}{c} 0.49 \\ 0.27 \\ 0.01 \\ 0.03 \\ 0.002 \\ 0.198 \\ 0.198 \\ 0.27; 0.03 \end{array}$ complete diagram 0.49; 0.01 0.198; 0.002 0.27; 0.03	M1 B1 B1 B1	(4)
(<i>e</i>)	P(Late) = 0.03 + 0.01 + 0.002 = 0.042 intersections, three of them added = 0.042	M1 A1 cao	(2)
			arks)

ft = follow-through mark; cao = correct answer only

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
4. (<i>a</i>)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M1 A2 (-1 eeoo) (3)
(b)	$E(X) = (1 \times 0.1) + (2 \times 0.1) + \dots + (8 \times 0.25)$	M1
	= 5.2	A1
	$E(X^2) = (1^2 \times 0.1) + (2^2 \times 0.1) + \dots + (8^2 \times 0.25)$	M1
	= 32.8	A1
	$Var(X) = E(X^{2}) - \{E(X)\}^{2}$	M1
	$= 32.8 - (5.2)^2 = 5.76 (\clubsuit)$	A1 cso (6)
(<i>c</i>)	E(Y) = 2E(X) + 3 = 13.4	B1
	$\operatorname{Var}\left(Y\right) = 2^2 \operatorname{Var}\left(X\right)$	M1
	$= 4 \times 5.76 = 23.04$	A1 (3)
		(12 marks)
5. (<i>a</i>)	Bell shaped curve; symmetrical about the mean; 95% of data lies within 2sd of mean; asymptotic etc (any 2).	B1; B1 (2)
(b)	$P(X < 3500) = 0.01 \Rightarrow \mu - 3500 = 2.3263\sigma$	M1 A1
	$P(X < 5500) = 0.025 \Rightarrow 5500 - \mu = 1.96\sigma$	A1
	solving for μ and σ	M1
	$0.01 \qquad 0.025 \qquad \sigma = 466.6028 \qquad \text{accept } 466.6/467$	A1
	$\mu = 4585.4583$ accept 4585.5/4590	A1 (6)
(c)	$P(X < 4000) = P\left(Z < \frac{4000 - 4585.4583}{466.6028}\right)$	M1 A1ft
	= P(Z < -1.25)	A1
	= 0.1056	A1 (4)
		(12 marks)

(*****) indicates final answer is given on question paper; ft = follow-through mark

PROVISIONAL MARK SCHEME

Question Number		Scheme	Marks	
6.	(<i>a</i>)	(<i>a</i>) Frequency densities – 5, 0, 10, 4, 110, 75, 1.7		
		Graph: scales and labels, shape, correct frequency densities	B1, M1, A1	
			(4)	
	<i>(b)</i>	$\Sigma f y = 2888.5$	B1	
		$\Sigma fy = 2888.5$ Mean weight = $14 + \frac{2888.5}{50 \times 10}$	M1	
		= 19.777 accept 19.78/19.8	A1	
		$S_y = \sqrt{\frac{171503.75}{50} - \left(\frac{2888.5}{50}\right)^2}$	M1	
		= 9.62819 awrt 9.63	A1	
		Standard deviation of weight = $\frac{9.62819}{10} = 0.96219$ accept 0.963/0.96	A1ft (6)	
		(NB: Using $n - 1$ gives 0.9725)		
	(c)	$Q_2 = 20.0 + \frac{(25-12)}{22} \times 0.2$ = 20.118 accept 20.1/20.12	M1	
		= 20.118 accept 20.1/20.12	A1 (2)	
	(d)	Median – data skewed	B1	
		Mean – lower value; fewer complaints	B1 (2)	
			(14 marks)	

awrt = anything which rounds to

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	\$
7. (<i>a</i>)	$\Sigma t = 169; \ \Sigma c = 357$		
	$S_{cc} = 14245 - \frac{357^2}{10} = 1500.1$	M1 A1	
	$S_{tt} = 168.9, \ S_{ct} = 492.7$	A1, A1	
	$r = \frac{492.7}{\sqrt{1500.1 \times 168.9}}$	M1 A1	
	= 0.97883 accept 0.979	A1	(7)
(b)	Since r close to 1, value supports use of regression line	B1 B1	(2)
(c)	$b = \frac{S_{ct}}{S_{tt}} = \frac{492.7}{168.9} = 2.91711$	B1	
	$a = \overline{c} - b\overline{t} = \frac{357}{10} - \frac{492.7}{168.9} \times \frac{169}{10} = -13.59917$	B1	
	c = -13.6 + 2.92t	B1	(3)
(<i>d</i>)	3 extra ice-creams are sold for every 1 °C increase in temperature	B1	(1)
(<i>e</i>)	$c = -13.6 + 2.92 \times 16 = 33.12$	M1 A1	
	i.e. 33 ice-creams	A1	(3)
(ƒ)	Temperature likely to be outside range of validity	B1	(1)
		(17 marks)	