
$\mathrm{ft}=$ follow-through mark; cao $=$ correct answer only

Question Number	Scheme	Marks
4. $\begin{array}{r}(a) \\ \\ (b) \\ \\ \\ \\ (c)\end{array}$	x 1 2 3 4 5 6 7 8 $\mathrm{P}(X=x)$ 0.1 0.1 0.05 0.15 0.1 0.1 0.15 0.25$\begin{aligned} \mathrm{E}(X) & =(1 \times 0.1)+(2 \times 0.1)+\ldots+(8 \times 0.25) \\ & =5.2 \\ \mathrm{E}\left(X^{2}\right) & =\left(1^{2} \times 0.1\right)+\left(2^{2} \times 0.1\right)+\ldots+\left(8^{2} \times 0.25\right) \\ & =32.8 \end{aligned}$$\begin{align*} \operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-\{\mathrm{E}(X)\}^{2} \\ & =32.8-(5.2)^{2}=5.76(\tag{6} \end{align*}$$\mathrm{E}(Y)=2 \mathrm{E}(X)+3=13.4$ $\operatorname{Var}(Y)=2^{2} \operatorname{Var}(X)$ $\begin{equation*} =4 \times 5.76=23.04 \tag{3} \end{equation*}$	$\begin{align*} & \text { M1 } \tag{3}\\ & \text { A2 (-1 eeoo) } \end{align*}$ M1 A1 M1 A1 M1 A1 cso B1 M1 A1 (12 marks)
5. (a) (b) (c)	Bell shaped curve; symmetrical about the mean; 95% of data lies within 2sd of mean; asymptotic etc (any 2). $\begin{aligned} & \mathrm{P}(X<3500)=0.01 \Rightarrow \mu-3500=2.3263 \sigma \\ & \mathrm{P}(X<5500)=0.025 \Rightarrow 5500-\mu=1.96 \sigma \end{aligned}$ solving for μ and σ $\sigma=466.6028 \ldots$ accept 466.6/467 $\mu=4585.4583 \ldots$ accept 4585.5/4590 $\begin{aligned} \mathrm{P}(X<4000) & =\mathrm{P}\left(Z<\frac{4000-4585.4583 \ldots}{466.6028 \ldots}\right) \\ & =\mathrm{P}(Z<-1.25) \\ & =0.1056 \end{aligned}$	

(*) indicates final answer is given on question paper; $\mathrm{ft}=$ follow-through mark

awrt $=$ anything which rounds to

Question Number	Scheme	Marks
7. (a)	$\Sigma t=169 ; \Sigma c=357$	
	$S_{c c}=14245-\frac{357^{2}}{10}=1500.1$	M1 A1
	$S_{t t}=168.9, S_{c t}=492.7$	A1, A1
	$r=\frac{492.7}{\sqrt{1500.1 \times 168.9}}$	M1 A1
	$=0.97883 \ldots$ accept 0.979	A1 (7)
(b)(c)	Since r close to 1, value supports use of regression line	B1 B1 (2)
	$b=\frac{S_{c t}}{S_{t t}}=\frac{492.7}{168.9}=2.91711 \ldots$	B1
	$a=\bar{c}-b \bar{t}=\frac{357}{10}-\frac{492.7}{168.9} \times \frac{169}{10}=-13.59917 \ldots$	B1
	$c=-13.6+2.92 t$	B1 (3)
(d)	3 extra ice-creams are sold for every $1^{\circ} \mathrm{C}$ increase in temperature	B1 (1)
(e)	$c=-13.6+2.92 \times 16=33.12$	M1 A1
	i.e. 33 ice-creams	A1 (3)
(f)	Temperature likely to be outside range of validity	B1 (1)
		(17 marks)

