1.	(a)	Impulse = change in linear momentum $I = m \ V \implies V = \underline{I}$ m	M1A1		
		Moment of impulse = change in ang. mom.			
		$\square a I = \square ma^2 \omega ; \Rightarrow a\omega = \frac{3I}{2m}$ (or $\omega =$	•) N	M1A1;A	.1
		Speed of $B = V + a\omega$, ; = $\frac{5I}{2m}$	M1;A1	(7)	
	(b)	Valid method for x [e.g. $V \pm x \ \omega = 0$]; $x = \frac{V}{\omega} = \frac{I}{m} \cdot \frac{2ma}{3I}$	M1;A1v	l	
		$[A1\sqrt{dep. on } M_1, M_2 \text{ and } M_4] = \bigotimes a$	A	A1 [10]	(3)
2		$\ddot{y} = 0 \implies \dot{y} = u \implies y = u t$	M1A1		
		[M for integration but accept with no working]			
		$\ddot{x} = -4y; (=-4ut)$	B1		
		$\Rightarrow x = -2 u t^2 + c$	M1A√		
		[M for $\int (-4y) dt$ with $y = f(t)$]			
		Using limits correctly or finding "c" $(x = -2 u t^2 + u)$	M1		
		Integrating: $x = u t - \bigotimes u t^3$ [M dep. on prev. two Ms]	M1A1		
		Setting $x = 0$ and solving for t	M1		
		$t = \sqrt{\frac{3}{2}}$ s or 1.22 s	A1	[10]	

3. (a)
$$\frac{1}{r} \frac{d}{dt} \left(r^2 \dot{\theta} \right) = 0; \implies r^2 \dot{\theta} = \text{constant} = h$$
 M1A1 (2)

(b)
$$r = a \sec 3\theta, \quad -\frac{\pi}{6} < \theta < \frac{\pi}{6}$$

 $r = 3a \sec 3\theta \tan 3\theta \cdot \theta$ B1

Using (a) to eliminate $\dot{\theta}$

$$= 3 r \tan 3\theta \cdot \frac{h}{r^2} = \frac{3 h \tan 3\theta}{r} \text{ (or } \frac{3 a h \sec 3\theta \tan 3\theta}{r^2} \text{ or } \frac{3 h \sin 3\theta}{a} \text{)} \qquad \text{M1}$$

$$r = 3h \frac{(r \cdot 3 \sec^2 3\theta \cdot \dot{\theta} - \tan 3\theta \cdot \dot{r})}{r^2} \qquad \text{or equivalent} \qquad \text{M1A1A1}$$

 $[OR \quad \ddot{r} = 3a \sec 3\theta \tan 3\theta \ddot{\theta} + [9a \sec 3\theta \tan^2 3\theta + 9a \sec^2 3\theta] \dot{\theta}^2 \text{ M1A2,1,0}$

Eliminate
$$\dot{\theta}$$
 and $\ddot{\theta}$ M1

Complete method to stage $\ddot{r} = f(r)$ only

$$[e.g. = \frac{3h}{r^2} (3\frac{h}{r}\sec^2 3\theta - 3\frac{h}{r}\tan^2 3\theta) = 3\frac{h}{r^2} \cdot 3\frac{h}{r}(\sec^2 3\theta - \tan^2 3\theta)]$$

$$\ddot{r} = 9\frac{h^2}{r^3}$$
A1

Mag. of accel. =
$$\ddot{r} - r\dot{\theta}^2$$
; = $9\frac{h^2}{r^3} - \frac{h^2}{r^3} = 8\frac{h^2}{r^3}$ ($k = 8h^2$) M1A1 $\sqrt{(9)}$ [11]

M1

4. (a)
$$[s = 20 \sin \psi$$
, $\frac{dx}{d\varphi} = 20 \cos \psi$ (i), $s = 20 \cos \psi \psi$ (ii)]
Equation of motion approach : $-(m)g \sin \psi = (m)s$ or $(m)v \frac{dv}{ds}$ M1A1
Arranging to integrable form: $[A1\sqrt{0} \text{ on omission of } -in \text{ prev. equation}]$ M1A1 $\sqrt{[e.g. -\int \frac{g}{20}s ds = \int v dv \text{ or } -20g \int \sin \psi \cos \psi d\psi = \int v dv]}$
Integrate: $-\frac{g}{40}s^2 = e^{-\gamma}v^2 + (C) \text{ or } 5g \cos 2\psi = e^{-\gamma}v^2 + (C) \text{ or equiv.}$ M1A1 \sqrt{U}
Using limits correctly or finding C M1
 $\Rightarrow 98 \cos 2\psi + 49 = v^2$ * A1 (8)
[Alternative: Energy approach
 $e^{-\gamma}mv^2 = mg(7.5 - iy)$ M1A1
Finding y
 $\frac{dy}{ds} = \sin \psi = \frac{s}{20}$ or $\frac{dy}{d\psi} = 20\sin\psi\cos\psi$ M1A1
 $\Rightarrow y = \frac{s^2}{40} (+C)$ or $y = -5\cos 2\psi (+C)$ or equivalent M1A1
Using limits correctly M1
 $v^2 = 49 + 98\cos 2\psi$ * (cso)] A1
(b) Along normal: $R - 100 g (\cos \psi) = 100 \frac{v^2}{\rho}$ M1A1
 $\rho = \frac{ds}{d\psi} = 20 \cos \psi$ B1
 $R = 100g + (5x147) = 1715 N (1720,1700)$ A1 (4)
[12]

5. (a) Method to find masses of end "discs" and curved "shell" M1 $\begin{bmatrix} M = \rho (2\pi a^2 + 8\pi a^2), \text{ Masses are } \underline{M}, \underline{M} \text{ and } 8\underline{M} \end{bmatrix}$ 10 10 10

I =
$$2\left(\frac{1}{2}m_1a^2\right) + m_2a^2$$
 M1A1

$$= \frac{9}{10}Ma^2 * (cso) A1 (4)$$

(b) Energy approach:

KE terms $\Box M v^2$, $\Box I (\dot{\theta})^2$ B1B1

$$(\text{Loss in}) PE = Mg \, 5a \sin \alpha \qquad \qquad M1$$

$$v = a \ \theta$$
 (seen anywhere) B1

Energy equation: $\Box M v^2 + \Box I (\dot{\theta})^2 = \text{loss in PE}$ M2 (no term in F)

Substituting for
$$v$$
 and I (dep. on M2) M1

$$\frac{1}{2} M a^{2} (\dot{\theta})^{2} + \frac{1}{2} \frac{9}{10} M a^{2} (\dot{\theta})^{2} = Mg \, 5a \sin \alpha \qquad A1$$
$$\frac{19}{20} M a^{2} (\dot{\theta})^{2} = Mg \, 5a \sin \alpha; \quad \dot{\theta} = 10 \sqrt{\frac{g \sin \alpha}{19 a}} \qquad M1; A1 \quad (10)$$

[Alternative approach:

 $Mg \sin \alpha - F = M \ddot{x} ; \quad Fa = I \ddot{\theta} \qquad M1A1;M1$ $\ddot{x} = a \ddot{\theta} \text{ (seen anywhere)} \qquad B1$ Method for $\ddot{x} : Mg \sin \alpha - \frac{9}{10}M \ddot{x} = M \ddot{x} \Rightarrow \ddot{x} = \frac{10}{19} g \sin \alpha M1A1$ [M dep. on prev. two Ms] $v^2 = 2 \ddot{x} s \Rightarrow v^2 = \frac{100}{19} ga \sin \alpha \qquad M1A1\sqrt{\frac{9}{19}a} = 10\sqrt{\frac{g \sin \alpha}{19a}} \qquad M1A1$ [14]

6. (a) Vertical component of velocity at wall unchanged

$$\uparrow 0 = 14 \sin \theta \ t - \boxdot g \ t^2 \qquad M1A1$$
$$= 14 \left(\frac{3}{5}\right) t - 4.9 \ t^2$$
$$\Rightarrow t = \frac{12}{7} \text{ s or } 1.71 \text{ s or } \frac{84}{5g} \qquad M1A1 \quad \textbf{(4)}$$

(b) Time to wall:
$$4 = 14 \cos \theta t$$
; $t = \frac{5}{14} (0.357)$ M1;A1
Complete method for time from wall to A: $T = \frac{12}{7} - \frac{5}{14} = \frac{19}{14} (1.36)$ M1
Horizontal component of velocity = $14 \cos \theta$ B1
Horizontal component of velocity after rebound = $\bigcirc (14 \cos \theta)$ M1
Distance from wall to A = $\bigcirc (14 \cos \theta) \times \frac{19}{14} = 7.6 \text{ s}$ M1A1 (7)
[Marks can be awarded if seen in longer methods for (a)]
(c) Vertical component of velocity at A is $14 \sin \theta$ B1
After hitting ground $v \uparrow = \bigcirc (14 \sin \theta) = 4.2$ (V) B1 $\sqrt{}$
Time from A to B: $0 = Vt - \bigcirc gt^2$; $t = \frac{6}{7} \text{ s} (0.86)$ M1A1 $\sqrt{}$;A1
Distance AB = $\bigcirc (14 \cos \theta) \times \left(\frac{6}{-1}\right) = 4.8 \text{ m}$ M1A1 (7)

istance AB = \square (14 cos θ) x $\left(\frac{6}{7}\right)_{c}$ = 4.8 m M1A1 (7) [18]