Downloaded from http://www.thepaperbank.co.uk

1. (a)

$$
\begin{aligned}
& \text { Impulse }=\text { change in linear momentum } \\
& \qquad I=m V \Rightarrow V=\underline{I} \\
& m
\end{aligned} \quad \text { M1A1 }
$$

Moment of impulse $=$ change in ang. mom.

$$
\begin{equation*}
\square a I=\text { 實 } m a^{2} \omega ; \Rightarrow a \omega=\frac{3 I}{2 m}(\text { or } \omega=. .) \tag{7}
\end{equation*}
$$

Speed of $B=V+a \omega, \quad ; \quad=\frac{\mathbf{5 I}}{\mathbf{2 m}}$
M1;A1
(b) Valid method for x [e.g. $V \pm x \omega=0] ; \quad x=\frac{V}{\omega}=\frac{I}{m} \cdot \frac{2 m a}{3 I}$ M1;A1 $\sqrt{ }$
[A1 $\sqrt{ }$ dep. on M_{1}, M_{2} and M_{4}]

$$
\begin{equation*}
=\text { ev } a \tag{3}
\end{equation*}
$$

A1
[10]

2
$\ddot{y}=0 \quad \Rightarrow \dot{y}=u \quad \Rightarrow y=u t$
M1A1
[M for integration but accept with no working]

$$
x=-4 y ; \quad(=-4 u t)
$$

B1
$\Rightarrow \dot{x}=-2 u t^{2}+\mathrm{c}$
M1A $\sqrt{ }$
[M for $\int(-4 y) \mathrm{d} t$ with $y=f(t)$]
Using limits correctly or finding "c" $\quad\left(\dot{x}=-2 u t^{2}+u\right)$
Integrating: $x=u t-$ है $u t^{3} \quad[\mathrm{M}$ dep. on prev. two Ms] M1A1
Setting $\mathrm{x}=0$ and solving for $\mathrm{t} \quad$ M1

$$
t=\sqrt{\frac{3}{2}} \mathrm{~s} \quad \text { or } 1.22 \mathrm{~s}
$$

A1
[10]

Downloaded from http://www.thepaperbank.co.uk

3. (a) $\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{dt}}\left(r^{2} \dot{\theta}\right)=0 ; \Rightarrow r^{2} \dot{\theta}=$ constant $=h$

M1A1 (2)
(b) $r=a \sec 3 \theta, \quad-\frac{\pi}{6}<\theta<\frac{\pi}{6}$
$\dot{r}=3 a \sec 3 \theta \tan 3 \theta \cdot \dot{\theta}$

Using (a) to eliminate $\dot{\theta}$
$=3 r \tan 3 \theta \cdot \frac{h}{r^{2}}=\frac{3 h \tan 3 \theta}{r}$ (or $\frac{3 a h \sec 3 \theta \tan 3 \theta}{r^{2}}$ or $\frac{3 h \sin 3 \theta}{a}$)
$\ddot{r}=3 h \frac{\left(r .3 \sec ^{2} 3 \theta . \dot{\theta}-\tan 3 \theta \cdot \dot{r}\right)}{r^{2}} \quad$ or equivalent
M1A1A1
[OR $\ddot{r}=3 a \sec 3 \theta \tan 3 \theta \ddot{\theta}+\left[9 a \sec 3 \theta \tan ^{2} 3 \theta+9 a \sec ^{2} 3 \theta\right] \dot{\theta}^{2} \mathrm{M} 1 \mathrm{~A} 2,1,0$
Eliminate $\dot{\theta}$ and $\ddot{\theta} \quad$ M1
Complete method to stage $\ddot{r}=f(r)$ only

$$
\begin{aligned}
{[\text { e.g. }} & \left.=\frac{3 h}{r^{2}}\left(3 \frac{h}{r} \sec ^{2} 3 \theta-3 \frac{h}{r} \tan ^{2} 3 \theta\right)=3 \frac{h}{r^{2}} \cdot 3 \frac{h}{r}\left(\sec ^{2} 3 \theta-\tan ^{2} 3 \theta\right)\right] \\
\ddot{r} & =9 \frac{h^{2}}{r^{3}}
\end{aligned}
$$

Mag. of accel. $=\ddot{r}-r \dot{\theta}^{2} ;=9 \frac{h^{2}}{r^{3}}-\frac{h^{2}}{r^{3}}=8 \frac{h^{2}}{r^{3}} \quad\left(\boldsymbol{k}=\mathbf{8} \boldsymbol{h}^{2}\right)$

Downloaded from http://www.thepaperbank.co.uk

4. (a) $\left[\mathrm{s}=20 \sin \psi, \frac{\mathrm{~d} s}{\mathrm{~d} \varphi}=20 \cos \psi\right.$ (i), $\dot{s}=20 \cos \psi \dot{\psi}$ (ii) $]$

Equation of motion approach : $-(\mathrm{m}) \mathrm{g} \sin \psi=(\mathrm{m}) \ddot{s}$ or $(\mathrm{m}) \mathrm{v} \frac{\mathrm{d} v}{\mathrm{ds}} \quad$ M1A1
Arranging to integrable form: [A1 $\sqrt{ }$ on omission of - in prev. equation] M1A1 $\sqrt{ }$
[e.g. $-\int \frac{\mathrm{g}}{20} s \mathrm{~d} s=\int v \mathrm{~d} v$ or $\left.-20 \mathrm{~g} \int \sin \psi \cos \psi \mathrm{~d} \psi=\int v \mathrm{~d} v\right]$

Integrate: $-\frac{\mathrm{g}}{40} s^{2}=\square v^{2}+(\mathrm{C})$ or $5 \mathrm{~g} \cos 2 \psi=\square v^{2}+(\mathrm{C})$ or equiv. M1A1 $\sqrt{ }$
Using limits correctly or finding C
M1

$$
\begin{equation*}
\Rightarrow 98 \cos 2 \psi+49=v^{2} \quad * \tag{8}
\end{equation*}
$$

A1
[Alternative: Energy approach

$$
m v^{2}=m g(7.5-' y \text { ' })
$$

Finding y

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} s}=\sin \psi=\frac{s}{20} \quad \text { or } \quad \frac{\mathrm{d} y}{\mathrm{~d} \psi}=20 \sin \psi \cos \psi \\
& \Rightarrow y=\frac{s^{2}}{40}(+\mathrm{C}) \text { or } \quad \mathrm{y}=-5 \cos 2 \psi(+\mathrm{C}) \text { or equivalent }
\end{aligned}
$$

Using limits correctly

$$
\left.V^{2}=49+98 \cos 2 \psi * \quad(\text { cso }) \quad\right] \quad \mathrm{A} 1
$$

(b) Along normal: $\mathrm{R}-100 \mathrm{~g}(\cos \psi)=100 \frac{v^{2}}{\rho}$

$$
\begin{align*}
& \rho=\frac{\mathrm{ds}}{\mathrm{~d} \psi}=20 \cos \psi \tag{B1}\\
& R=100 \mathrm{~g}+(5 \times 147)=\mathbf{1 7 1 5} \mathbf{N}(1720,1700)
\end{align*}
$$

Downloaded from http://www.thepaperbank.co.uk

5. (a) Method to find masses of end "discs" and curved "shell"
$\left[\mathrm{M}=\rho\left(2 \pi \mathrm{a}^{2}+8 \pi \mathrm{a}^{2}\right)\right.$, Masses are $\frac{M}{10}, \frac{M}{10}$ and $\left.\frac{8 M}{10}\right]$

$$
\begin{align*}
\mathrm{I} & =2\left(\frac{1}{2} m_{1} a^{2}\right)+m_{2} a^{2} \tag{M1A1}\\
& =\frac{9}{10} M a^{2} \quad * \quad(\mathrm{cso}) \tag{4}
\end{align*}
$$

(b) Energy approach:

$$
\begin{array}{lll}
\text { KE terms } & \square M v^{2}, \boxtimes I(\dot{\theta})^{2} & \text { B1B1 } \\
(\text { Loss in }) \mathrm{PE}=M \mathrm{~g} 5 a \sin \alpha & \text { M1 } \\
v=a \dot{\theta} & \text { (seen anywhere) } & \text { B1 }
\end{array}
$$

Energy equation: $\boxtimes M v^{2}+\boxtimes I(\dot{\theta})^{2}=$ loss in PE M2 (no term in F)
Substituting for v and $I \quad$ (dep. on M2) M1

$$
\begin{align*}
& \frac{1}{2} M a^{2}(\dot{\theta})^{2}+\frac{1}{2} \frac{9}{10} M a^{2}(\dot{\theta})^{2}=M \mathrm{~g} 5 a \sin \alpha \\
& \frac{19}{20} M a^{2}(\dot{\theta})^{2}=M \mathrm{~g} 5 a \sin \alpha ; \quad \dot{\theta}=10 \sqrt{\frac{g \sin \alpha}{19 a}} \quad \text { M1 } ; \mathrm{A} 1 \tag{10}
\end{align*}
$$

[Alternative approach:
$M g \sin \alpha-F=M \ddot{x} ; \quad F a=I \ddot{\theta}$
M1A1;M1
$\ddot{x}=a \ddot{\theta} \quad$ (seen anywhere)
B1
Method for $\ddot{x}: M g \sin \alpha-\frac{9}{10} M \ddot{x}=M \ddot{x} \Rightarrow \ddot{x}=\frac{10}{19} g \sin \alpha$ M1A1
[M dep. on prev. two Ms]

$$
\begin{array}{rlr}
v^{2}=2 \ddot{x} s \Rightarrow v^{2} & =\frac{100}{19} g a \sin \alpha & \text { M1A1 } \sqrt{ } \\
\dot{\theta} & =\frac{v}{a}=10 \sqrt{\frac{g \sin \alpha}{19 a}} & \text { M1A1 }]
\end{array}
$$

Downloaded from http://www.thepaperbank.co.uk

6. (a) Vertical component of velocity at wall unchanged

$$
\begin{align*}
\uparrow 0 & =14 \sin \theta t-\nabla \mathrm{g} t^{2} & \text { M1A1 } \\
& =14\left(\frac{3}{5}\right) t-4.9 t^{2} & \\
\Rightarrow t & =\frac{12}{7} \mathrm{~s} \text { or } 1.71 \mathrm{~s} \text { or } \frac{84}{5 \mathrm{~g}} & \text { M1A1 } \tag{4}
\end{align*}
$$

(b) Time to wall: $4=14 \cos \theta t ; \quad t=\frac{5}{14}(0.357) \quad$ M1;A1

Complete method for time from wall to A: $T=\frac{12}{7}-\frac{5}{14}=\frac{19}{14}(1.36) \mathrm{M} 1$
Horizontal component of velocity $=14 \cos \theta \quad$ B1
Horizontal component of velocity after rebound $=\square(14 \cos \theta)$
Distance from wall to $\mathrm{A}=\square(14 \cos \theta) \times \frac{19}{14}=7.6 \mathrm{~s}$
M1A1
(7)
[Marks can be awarded if seen in longer methods for (a)]
(c) Vertical component of velocity at A is $14 \sin \theta$ B1

After hitting ground $\mathrm{v} \uparrow=\square(14 \sin \theta)=4.2(V)$ B1 $\sqrt{ }$

Time from A to B: $0=V t-\square \mathrm{g} t^{2} ; \quad \mathrm{t}=\frac{6}{7} \mathrm{~s}(0.86)$
M1A1 $\sqrt{ }$;A1

Distance $\mathrm{AB}=\square(14 \cos \theta) \times\left(\frac{6}{7}\right)_{C}=4.8 \mathrm{~m}$ M1A1

Downloaded from http://www.thepaperbank.co.uk

