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1. Given that z = 22 + 4i and 
w

z
= 6 – 8i, find

(a) w in the form a + bi, where a and b are real,
                    (3)

(b) the argument of z, in radians to 2 decimal places.
(2)

2. Find the set of values for which

x – 1 > 6x – 1.
(5)

3. (a) Prove that 



n

r

rr
1

)1)(1( = 6
1 n (n – 1)(2n + 5).

(5)
(b) Deduce that n(n – 1)(2n + 5) is divisible by 6 for all n > 1.

(2)

4. f(x) = x3 + x – 3.

The equation f(x) = 0 has a root,  , between 1 and 2.

(a) By considering f (x), show that  is the only real root of the equation f(x) = 0.
(3)

(b) Taking 1.2 as your first approximation to , apply the Newton-Raphson 
procedure once to f(x) to obtain a second approximation to . Give your answer 
to 3 significant figures.

(2)
(c) Prove that your answer to part (b) gives the value of  correct to 3 significant 
figures. 

(2)
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5. (a) Given that 2 + i is a root of the equation

z2 + bz + c = 0, where b and c are real constants,

(i) write down the other root of the equation,

(ii) find the value of b and the value of c.
(5)

(b) Given that 2 + i is a root of the equation

z3 + mz2 + nz – 5 = 0, where m and n are real constants,

find the value of m and the value of n.
(5)

6. (a) Find the general solution of the differential equation

t
t

v

d

d
 v = t,    t > 0 

and hence show that the solution can be written in the form v = t(ln t + c), where 
c is an arbitrary constant.

(6)
(b) This differential equation is used to model the motion of a particle which has 
speed v m s1 at time t s. When t = 2 the speed of the particle is 3 m s1. Find, to 3 
significant figures, the speed of the particle when t = 4.

(4)

7. (a) Show that y = 2
1 x2ex is a solution of the differential equation

2

2

d

d

x

y
 2

x

y

d

d
+ y = ex. 

(4)
(b) Solve the differential equation 

2

2

d

d

x

y
 2

x

y

d

d
+ y = ex. 

given that at x = 0, y = 1 and 
x

y

d

d
= 2.

(9)
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8. The curve C has polar equation r = 3a cos  , 
2




2


. The curve D has polar 

equation r = a(1 + cos  ),    < .  Given that a is a positive constant,

(a) sketch, on the same diagram, the graphs of C and D, indicating where each 
curve cuts the initial line.

(4)
The graphs of C intersect at the pole O and at the points P and Q. 

(b) Find the polar coordinates of P and Q. 
(3)

(c) Use integration to find the exact value of the area enclosed by the curve D and 

the lines  = 0 and   = 
3


.

(7)
The region R contains all points which lie outside D and inside C.

Given that the value of the smaller area enclosed by the curve C and the line 

  =
3


is

16

3 2a
(2  33),

(d) show that the area of R is a2.
(4)

END
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Given that z = 22 + 4i and 
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Find the set of values for which





(x – 1( > 6x – 1.
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(5)



(b) Deduce that n(n – 1)(2n + 5) is divisible by 6 for all n > 1.


(2)




4.




f(x) = x3 + x – 3.



The equation f(x) = 0 has a root, ( , between 1 and 2.



(a) By considering f ((x), show that ( is the only real root of the equation f(x) = 0.


(3)



(b) Taking 1.2 as your first approximation to (, apply the Newton-Raphson procedure once to f(x) to obtain a second approximation to (. Give your answer to 3 significant figures.


(2)



(c) Prove that your answer to part (b) gives the value of ( correct to 3 significant figures. 


(2)




5.
(a) Given that 2 + i is a root of the equation






z2 + bz + c = 0, where b and c are real constants,




(i) write down the other root of the equation,




(ii) find the value of b and the value of c.


(5)



(b) Given that 2 + i is a root of the equation





z3 + mz2 + nz – 5 = 0, where m and n are real constants,



find the value of m and the value of n.


(5)




6.
(a) Find the general solution of the differential equation
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 ( v = t,    t > 0 


and hence show that the solution can be written in the form v = t(ln t + c), where c is an arbitrary constant.


(6)


(b) This differential equation is used to model the motion of a particle which has speed v m s(1 at time t s. When t = 2 the speed of the particle is 3 m s(1. Find, to 3 significant figures, the speed of the particle when t = 4.


(4)
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(a) Show that y = 

[image: image5.wmf]2


1


x2ex is a solution of the differential equation
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(b) Solve the differential equation 
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given that at x = 0, y = 1 and 
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8.
The curve C has polar equation r = 3a cos ( , (
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. The curve D has polar equation r = a(1 + cos ( ), ((  ( ( < (.  Given that a is a positive constant,



(a) sketch, on the same diagram, the graphs of C and D, indicating where each curve cuts the initial line.


(4)



The graphs of C intersect at the pole O and at the points P and Q. 




(b) Find the polar coordinates of P and Q. 


(3)



(c) Use integration to find the exact value of the area enclosed by the curve D and the lines (  = 0 and (  = 
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The region R contains all points which lie outside D and inside C.



Given that the value of the smaller area enclosed by the curve C and the line (  = 
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(d) show that the area of R is (a2.


(4)
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