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 1.
The following is a table of values for y = ((1 + sin x), where x is in radians.

x
0
0.5
1
1.5
2


y
1
1.216
p
1.413
q



(a) Find the value of p and the value of q.

(2)


(b) Use the trapezium rule and all the values of y in the completed table to obtain an estimate of I, where







I = 
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    (4) 


2.
Given that p = logq 16, express in terms of p,

(a) logq 2,

(2)

(b) logq (8q).


(4)      

3. 
The function f is defined by

f : x (( (2x – a(,   x (ℝ,




where a is a positive constant. 

(a) Sketch the graph of y = f(x), showing the coordinates of the points where the graph cuts the axes.

(2)


(b) On a separate diagram, sketch the graph of y = f(2x), showing the coordinates of the points where the graph cuts the axes.

(2)


(c) Given that a solution of the equation f(x) = 
[image: image2.wmf]2

1

x is x = 4, find the two possible values of a.

(4)


4.





Figure 1
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In Fig. 1, the curve C has equation y = f(x), where






f(x) = x + 
[image: image3.wmf]2

2

x

,     x > 0.

The shaded region is bounded by C, the x-axis and the lines with equations x = 1 and x = 2. The shaded region is rotated through 2( radians about the x-axis.

Using calculus, calculate the volume of the solid generated. Give your answer in the form ((a + ln b), where a and b are constants.

 (8)

5.
Initially the number of fish in a lake is 500 000. The population is then modelled by the recurrence relation







un + 1 = 1.05un – d,    u0 =  500 000.


In this relation un is the number of fish in the lake after n years and d is the number of fish which are caught each year.


Given that d = 15 000,


(a) calculate u1 , u2 and u3 and comment briefly on your results.

(3)


Given that d = 100 000,


(b) show that the population of fish dies out during the sixth year.

(3)


(c) Find the value of d which would leave the population each year unchanged.


(2)


6.
(a) Prove that
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(3)

(b) Solve, giving exact answers in terms of (,




2(1 – cos 2( ) = tan ( ,      0 < (  < ( .






      (6)


7.





Figure 2
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Figure 2 shows part of the curve C with equation y = f(x), where






f(x) = 0.5ex – x2.


The curve C cuts the y-axis at A and there is a minimum at the point B.


(a) Find an equation of the tangent to C at A.

(4)


The ​x-coordinate of B is approximately 2.15. A more exact estimate is to be made of this coordinate using iterations xn + 1 = ln g(xn).


(b) Show that a possible form for g(x) is g(x) = 4x.

(3)


(c) Using xn + 1 = ln 4xn , with x0 = 2.15, calculate x1 , x2 and x3. Give the value of x3 to 4 decimal places.

(2)


8.



f(x) = 
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(a) Prove that f(x) = 
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(4)


(b) Find the range of f.

(2)


(c) Find f (1(x).


(3)


(d) Find the range of f (1(x).


(1)




9.


f(x) = 
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Given that the coefficient of x3 is twice the coefficient of x2 in the binomial expansion of f(x),


(a) prove that n = 6k + 2.

      (3)


Given also that the coefficients of x4 and x5 are equal and non-zero,


(b) form another equation in n and k and hence show that k = 2 and n = 14.

 (4)


Using these values of k and n,


(c) expand f(x) in ascending powers of x, up to and including the term in x5. Give each coefficient as an exact fraction in its lowest terms.

 (4)
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