

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS						9709/01
Paper 1 Pure M	athematics	1 (P1)		For I	Examination	from 2017
SPECIMEN PAF	PER				1 hour	45 minutes
Candidates answ	ver on the C	Question Pa	aper.			
Additional Mater	ials: Lis	st of Formu	lae (MF9)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

is zero.				constant, show th	
••••••	•••••	••••••	•••••	••••••	••••••
••••••	•••••		•••••	••••••••	••••••
	•••••				
••••••			•••••	••••••	••••••
	•••••				••••••
••••••	••••••	••••••	•••••	••••••	••••••
The function f	is such that $f'(x)$	$x) = 3x^2 - 7 \text{ an}$	d f(3) = 5. Find	f(x).	
••••••	•••••	••••••	•••••	••••••	••••••
	•••••				
			•••••	•••••	• • • • • • • • • • • • • • • • • • • •

	$4\sin^2\theta - 15\sin\theta - 4 = 0.$	[
•		
•		•••••
•		
•		•••••
		•••••
•		
•		
•		
•		
		• • • • • • • • • • • • • • • • • • • •
•		
 •		••••••
•		

(ii)	Hence solve the equation	$\frac{4\cos\theta}{\tan\theta} + 15 = 0 \text{ for } 0^{\circ} \le \theta \le 360^{\circ}.$	[3]
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			••••••
			•••••
			•••••

5 A curve has equation $y = \frac{8}{x} + 2x$.

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	

p	point.
•	
•	
•	
•	
•	
•	
•	
•	
• •	
•	
_	
•	
•	
•	
•	
•	
• •	
•	
•	

the ed	quation $x^2 - 4$	4x + (3 - a)	=0.			the line and		
•••••	•••••			•••••		•••••		•••••
•••••			•••••	••••••	••••••	•••••	•••••	••••••
•••••			•••••	••••••	•••••	•••••		
•••••								•••••
	ne case where f the points of							
•••••	••••••		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••
•••••			•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •

coordinate	es of P.						[4
						 	 •••••
	•••••				•••••	 	
	•••••				•••••	 	
•••••							
			•••••	••••••	•••••	 •••••	 ••••••
•••••				••••••	•••••	 •••••	 ••••••
		•••••	•••••	••••••	•••••	 	 •••••
				•••••	•••••	 •••••	 •••••
						 	 •••••
•••••						 	 ••••••
•••••						 	
						 	 •••••
•••••			•••••		•••••	 	

7

The diagram shows a circle with centre A and radius r. Diameters CAD and BAE are perpendicular to each other. A larger circle has centre B and passes through C and D.

(i)	Show that the radius of the larger circle is $r\sqrt{2}$.	[1]
		•••••
		•••••
(ii)	Find the area of the shaded region in terms of r .	[6]
(ii)	Find the area of the shaded region in terms of r .	[6]
(ii)	Find the area of the shaded region in terms of <i>r</i> .	[6]
(ii)	Find the area of the shaded region in terms of <i>r</i> .	[6]
(ii)	Find the area of the shaded region in terms of <i>r</i> .	[6]
(ii)	Find the area of the shaded region in terms of <i>r</i> .	[6]
(ii)	Find the area of the shaded region in terms of <i>r</i> .	[6]

8

	For the case where the progression is arithmetic with a common difference of 12, find the possil values of x and the corresponding values of the third term.
•	
•	
•	
•	
•	
•	

(ii)	For the case where the progression is geometric with a sum to infinity of 8, find the third term. [4]

••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	

The	The function $f: x \mapsto -x^2 + 6x - 5$ is defined for $x \ge m$, where m is a constant.		
(ii)	State the smallest value of m for which f is one-one.	[1]	
		· • • • • • • •	
(iii)	For the case where $m = 5$, find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[4]	
		· • • • • • • • • • • • • • • • • • • •	
		, 	
		••••••	

(i)

The diagram shows a cuboid OABCPQRS with a horizontal base OABC in which AB = 6 cm and OA = a cm, where a is a constant. The height OP of the cuboid is 10 cm. The point T on BR is such that BT = 8 cm, and M is the mid-point of AT. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OP respectively.

For the case where $a = 2$, find the unit vector in the direction of \overrightarrow{PM} .	[4]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

(ii)	For the case where angle $ATP = \cos^{-1}(\frac{2}{7})$, find the value of a .	[5]
		•••••
		•••••
		•••••
		•••••
		•••••

11

The diagram shows part of the curve $y = (1 + 4x)^{\frac{1}{2}}$ and a point P(6, 5) lying on the curve. The line PQ intersects the x-axis at Q(8, 0).

(i)	Show that PQ is a normal to the curve.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••

(11)	region is rotated through 360° about the x-axis. [7]
	[In part (ii) you may find it useful to apply the fact that the volume, V , of a cone of base radius r and vertical height h , is given by $V = \frac{1}{3}\pi r^2 h$.]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.