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1 Given that 1 is an obtuse angle measured in radians and that sin 1 = k, find, in terms of k, an expression

for

(i) cos1, [1]

(ii) tan1, [2]

(iii) sin�1 + 0�. [1]

2

x

y

O

Q

X �−2, 0� P �p, 0�

y = 2x2

The diagram shows the curve y = 2x2 and the points X �−2, 0� and P �p, 0�. The point Q lies on the

curve and PQ is parallel to the y-axis.

(i) Express the area, A, of triangle XPQ in terms of p. [2]

The point P moves along the x-axis at a constant rate of 0.02 units per second and Q moves along the

curve so that PQ remains parallel to the y-axis.

(ii) Find the rate at which A is increasing when p = 2. [3]

3 (i) Find the first three terms, in ascending powers of x, in the expansion of

(a) �1 − x�6, [2]

(b) �1 + 2x�6. [2]

(ii) Hence find the coefficient of x2 in the expansion of ��1 − x��1 + 2x��6. [3]

4 Relative to the origin O, the position vectors of points A and B are given by

−−→
OA =

`
3

0

−4

a
and

−−→
OB =

`
6

−3

2

a
.

(i) Find the cosine of angle AOB. [3]

The position vector of C is given by
−−→
OC =

`
k

−2k

2k − 3

a
.

(ii) Given that AB and OC have the same length, find the possible values of k. [4]
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5 A piece of wire of length 24 cm is bent to form the perimeter of a sector of a circle of radius r cm.

(i) Show that the area of the sector, A cm2, is given by A = 12r − r2. [3]

(ii) Express A in the form a − �r − b�2, where a and b are constants. [2]

(iii) Given that r can vary, state the greatest value of A and find the corresponding angle of the sector.

[2]

6 The line with gradient −2 passing through the point P �3t, 2t� intersects the x-axis at A and the y-axis

at B.

(i) Find the area of triangle AOB in terms of t. [3]

The line through P perpendicular to AB intersects the x-axis at C.

(ii) Show that the mid-point of PC lies on the line y = x. [4]

7 (a) The third and fourth terms of a geometric progression are 1
3

and 2
9

respectively. Find the sum to

infinity of the progression. [4]

(b) A circle is divided into 5 sectors in such a way that the angles of the sectors are in arithmetic

progression. Given that the angle of the largest sector is 4 times the angle of the smallest sector,

find the angle of the largest sector. [4]

8 The function f : x  → 5 + 3 cos
�

1
2
x
�

is defined for 0 ≤ x ≤ 20.

(i) Solve the equation f�x� = 7, giving your answer correct to 2 decimal places. [3]

(ii) Sketch the graph of y = f�x�. [2]

(iii) Explain why f has an inverse. [1]

(iv) Obtain an expression for f −1�x�. [3]

9 The equation of a curve is y = x3
+ px2, where p is a positive constant.

(i) Show that the origin is a stationary point on the curve and find the coordinates of the other

stationary point in terms of p. [4]

(ii) Find the nature of each of the stationary points. [3]

Another curve has equation y = x3
+ px2

+ px.

(iii) Find the set of values of p for which this curve has no stationary points. [3]

[Question 10 is printed on the next page.]
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10
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x = 4

y =
8��3x + 4�

P

QA
�0, 4�

The diagram shows part of the curve y =
8��3x + 4� . The curve intersects the y-axis at A �0, 4�. The

normal to the curve at A intersects the line x = 4 at the point B.

(i) Find the coordinates of B. [5]

(ii) Show, with all necessary working, that the areas of the regions marked P and Q are equal. [6]
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