CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge International A Level – May/June 2015	9709	72

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme S		Paper
	Cambridge International A Level – May/June 2015	9709	72

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable) AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid) BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear) CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed) CWO Correct Working Only – often written by a 'fortuitous' answer ISW Ignore Subsequent Working MR Misread PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme		Paper
	Cambridge International A Level – May/June 2015	9709	72

1	Var = $16 \times 9 + 25 \times 36$ (= 1044) sd = 32.3 or $6\sqrt{29}$ or $\sqrt{1044}$	B1 M1 A1	M1 for 16 (or 4 ²) & 25 (or 5 ²) used M1 for add any multiples of 9 and 36 only
	Total	3	
2 (i)	$H_0: \lambda = 0.5$ $H_1: \lambda > 0.5$	B1	or Pop mean = 0.5, not just Mean = 0.5 or Pop mean (per m ²)= 0.1 Accept μ instead of λ
(ii)	$1 - e^{-0.5}(1 + 0.5)$ = 0.0902 (3 sf) comp 0.1 Claim justified or there is evidence to support claim	M1 A1 M1 A1√ ^A	$1 - P(X = 0,1)$ attempted, any λ . Allow 1 end error Allow 0.09 Valid comparison NB 0.9098>0.9 recovers M1A1 M1 oe Accept 'Reject H ₀ ' if correctly defined No contradictions.
	Total	5	
3	$\lambda = 5 \times 0.15 $ (= 0.75) E(amount) = 200 × 0.75 = 150	M1 A1	
	Var(weekly no of hole-in-ones) = 0.75 Var(amount) = $200^2 \times 0.75$ = $30,000$	B1√ ^Å M1 A1	Allow 200 ² × their variance (with nothing added/subtracted at any stage) (SR probability table can score M1A0 srB1 if var rounds to 30,000 (2sf))
	Total	5	
4 (i)	Conclude flight times affected	B1	Or accept pop mean changed from 6.2
	when in fact they have not been.	B1 2	although pop mean has not changed from 6.2
(ii)	H ₀ : Pop mean (or μ) = 6.2 H ₀ : Pop mean (or μ) \neq 6.2 $\frac{5.98 - 6.2}{\frac{0.8}{\sqrt{40}}}$ = -1.739 (±) Accept (±)1.74 comp z = 1.96	B1 M1 A1 B1√ [*]	Allow with 40 instead of $\sqrt{40}$ Allow SD/Var mix (CV method 5.952 or 6.2279 M1 A1) For valid comparison or P(z < -1.739) = 0.041 > 0.025 or 5.98 > 5.952 or 6.2 < 6.228 and correct conclusion
	No evidence that flight times affected		
(iii)	H ₀ was not rejected oe Type II	B1* B1*dep	If in (ii) H_0 was rejected, then: H_0 rejected B1; Type I B1dep
	Total	8	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	72

		Total	10		
		$= \frac{45}{8} \text{ or } 5.625 \text{ or } 5.63 \text{ (3 sf)}$	A1 4	4	Accept 5 mins 37 or 38 secs
		$= \frac{1}{2250} \left[\frac{50625}{2} - \frac{50625}{4} \right]$	M1*dep	,	Sub correct limits into their integral
		$=\frac{1}{2250}\left[\frac{225t^2}{2}-\frac{t^4}{4}\right]^{15}_{0}$	A1		Correct integration and limits. Condone missing k
((iii)	$\frac{1}{2250} \int_{0}^{15} (225t - t^3) \mathrm{d}t$	M1*		Attempt integ $xf(x)$, ignore limits
		$= \frac{4}{27} \text{ or } 0.148 (3 \text{ sf})$	A1 :	3	
		$(=\frac{1}{2250}\left[225t - \frac{t^3}{3}\right]_{10}^{15})$ $=\frac{1}{2250}\left[2250 - (2250 - \frac{1000}{3})\right]$	A1	2	Or $1-\int_{0}^{10}$ Correct integration and limits. Condone missing k
	(ii)	$\frac{1}{2250} \int_{10}^{15} (225 - t^2) dt$	M1		Attempt integ, ignore limits
		$k \ge [3375 - 1125] = 1$ or $k \ge 2250 = 1$ $(k = \frac{1}{2250} \text{ AG})$		5	
			A1 A1	3	Correct integration and limits No errors seen
6	(i)	$k \int_{0}^{15} (225 - t^{2}) dt = 1$ $k \left[225t - \frac{t^{3}}{3} \right]_{0}^{15} = 1$	M1		Attempt integ $f(x)$ and = 1. Ignore limits
		Total	9		
((iii)	0.96^4 = 0.849 (3 sf)	M1 A1 2	2	
		z = 1.406 or 1.405 $\Phi(`1.406`) \qquad (= 0.92 \text{ or } 0.9199)$ $\alpha = 84 (2 \text{ sf}) \qquad \text{allow } 83.98$	M1 A1	4	$z = 2.812 \text{ or } 2.810 \qquad \text{A0} \\ \Phi(`2.812') \qquad (= 0.9975) \\ \alpha = 99.5 \text{ or } 99 \text{ or } 100 \qquad \text{M1 A0} \\ \text{For complete method to find } \alpha \\ \text{SR use of biased var}(184) \text{ scores M1A1}(1.4205) \\ \text{A=84.5 M1A1} \end{cases}$
	(ii)	$2 \times z \times \sqrt{\frac{187.755'}{50}} = 5.45$ oe	M1 A1		If '2 ×' omitted: $z \times \sqrt{\frac{'187.755'}{50}} = 5.45$ M1
		$\frac{49}{49}\left(\frac{50}{50}-230\right) + (-187.755)$ = 188 (3 sf)	A1 .	3	
5	(i)	$\frac{14800/50 \text{ or } 296}{\frac{50}{49}} \left(\frac{4390000}{50} - 296'^{2}\right) (= 187.755)$	B1 M1		Oe

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	72

7 (i)	Poisson	B1		
	(Actually binomial with) n > 50 and np (or λ) (= 2.1) which is < 5	B1 B1	3	Allow without "binomial" Accept n large Accept p small (p < 0.1)
(ii)	$\lambda = 2.1$ e ^{-2.1} $\left(1 + 2.1 + \frac{2.1^2}{2} + \frac{2.1^3}{3!}\right)$ = 0.839 (3 sf)	B1 M1 A1	3	Attempt P(0,1,2,3) any λ allow 1 end error SR ₁ Ft Normal N(2.1,2.1) B1 standardising M1 0.833 A1 SR ₂ Ft Binomial B(10500,0.0002) B1 calculating binomial prob P(0,1,2,3) M1 = 0.8386 A1
(iii)	$P(X \ge 1) = 1 - e^{-2.1} (= 0.\ 87754)$ $P(X = 1, 2, 3) = e^{-2.1} \left(2.1 + \frac{2.1^2}{2} + \frac{2.1^3}{3!} \right)$	M1		Any λ
	(= 0.71619)	M1		Or '0.839' - $e^{-2.1}$ Any λ
	$\frac{P(X=1,2,3)}{P(X>1)} \\ \left(=\frac{0.71619}{0.87754}\right)$	M1		Allow any attempted $\frac{P(X=1,2,3)}{P(X>1)}$ Any λ
	(0.87754) = 0.816 (3 sf)	A1	4	SR ₁ Ft Normal P(>0.5)=0.86523 M1 P(1,2,3)=0.698 M1 0.698/0.86523 = 0.807 M1A1 SR ₂ FT Binomial M1 M1 M1 A1
	Total	10		
	Total for paper	50		